Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma Grading Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/7315665
Accurate preoperative glioma grading is essential for clinical decision-making and prognostic evaluation. Multiparametric magnetic resonance imaging (mpMRI) serves as an important diagnostic tool for glioma patients due to its superior performance in describing noninvasively the contextual information in tumor tissues. Previous studies achieved promising glioma grading results with mpMRI data utilizing a convolutional neural network (CNN)-based method. However, these studies have not fully exploited and effectively fused the rich tumor contextual information provided in the magnetic resonance (MR) images acquired with different imaging parameters. In this paper, a novel graph convolutional network (GCN)-based mpMRI information fusion module (named MMIF-GCN) is proposed to comprehensively fuse the tumor grading relevant information in mpMRI. Specifically, a graph is constructed according to the characteristics of mpMRI data. The vertices are defined as the glioma grading features of different slices extracted by the CNN, and the edges reflect the distances between the slices in a 3D volume. The proposed method updates the information in each vertex considering the interaction between adjacent vertices. The final glioma grading is conducted by combining the fused information in all vertices. The proposed MMIF-GCN module can introduce an additional nonlinear representation learning step in the process of mpMRI information fusion while maintaining the positional relationship between adjacent slices. Experiments were conducted on two datasets, that is, a public dataset (named BraTS2020) and a private one (named GliomaHPPH2018). The results indicate that the proposed method can effectively fuse the grading information provided in mpMRI data for better glioma grading performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/7315665
- https://downloads.hindawi.com/journals/jhe/2022/7315665.pdf
- OA Status
- hybrid
- Cited By
- 7
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280527660
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280527660Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/7315665Digital Object Identifier
- Title
-
Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma GradingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-10Full publication date if available
- Authors
-
Peiying Guo, Longfei Li, Cheng Li, Weijian Huang, Guohua Zhao, Shanshan Wang, Meiyun Wang, Yusong LinList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/7315665Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jhe/2022/7315665.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jhe/2022/7315665.pdfDirect OA link when available
- Concepts
-
Grading (engineering), Glioma, Computer science, Convolutional neural network, Artificial intelligence, Magnetic resonance imaging, Graph, Information fusion, Pattern recognition (psychology), Radiology, Medicine, Theoretical computer science, Civil engineering, Cancer research, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280527660 |
|---|---|
| doi | https://doi.org/10.1155/2022/7315665 |
| ids.doi | https://doi.org/10.1155/2022/7315665 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35591941 |
| ids.openalex | https://openalex.org/W4280527660 |
| fwci | 0.94195162 |
| mesh[0].qualifier_ui | Q000000981 |
| mesh[0].descriptor_ui | D005910 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | diagnostic imaging |
| mesh[0].descriptor_name | Glioma |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008279 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Magnetic Resonance Imaging |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000081364 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Multiparametric Magnetic Resonance Imaging |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D060787 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neoplasm Grading |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | Q000000981 |
| mesh[6].descriptor_ui | D005910 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | diagnostic imaging |
| mesh[6].descriptor_name | Glioma |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008279 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Magnetic Resonance Imaging |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000081364 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Multiparametric Magnetic Resonance Imaging |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D060787 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neoplasm Grading |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | Q000000981 |
| mesh[12].descriptor_ui | D005910 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | diagnostic imaging |
| mesh[12].descriptor_name | Glioma |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D008279 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Magnetic Resonance Imaging |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000081364 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Multiparametric Magnetic Resonance Imaging |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D060787 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neoplasm Grading |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016571 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma Grading |
| awards[0].id | https://openalex.org/G7699791645 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 20XTZX06013 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5639087772 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 81772009 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G7557950834 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 20XTZX05015 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C2777286243 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7718933820724487 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[0].display_name | Grading (engineering) |
| concepts[1].id | https://openalex.org/C2778227246 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7558934688568115 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1365309 |
| concepts[1].display_name | Glioma |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6979528069496155 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6939380168914795 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5353368520736694 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C143409427 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5103475451469421 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[5].display_name | Magnetic resonance imaging |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4379746913909912 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C2982962833 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43243271112442017 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17092450 |
| concepts[7].display_name | Information fusion |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42271432280540466 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C126838900 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17971733212471008 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[9].display_name | Radiology |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12867456674575806 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11362183094024658 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C147176958 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[12].display_name | Civil engineering |
| concepts[13].id | https://openalex.org/C502942594 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3421914 |
| concepts[13].display_name | Cancer research |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/grading |
| keywords[0].score | 0.7718933820724487 |
| keywords[0].display_name | Grading (engineering) |
| keywords[1].id | https://openalex.org/keywords/glioma |
| keywords[1].score | 0.7558934688568115 |
| keywords[1].display_name | Glioma |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6979528069496155 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6939380168914795 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5353368520736694 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[5].score | 0.5103475451469421 |
| keywords[5].display_name | Magnetic resonance imaging |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.4379746913909912 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/information-fusion |
| keywords[7].score | 0.43243271112442017 |
| keywords[7].display_name | Information fusion |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.42271432280540466 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/radiology |
| keywords[9].score | 0.17971733212471008 |
| keywords[9].display_name | Radiology |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.12867456674575806 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.11362183094024658 |
| keywords[11].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1155/2022/7315665 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36625193 |
| locations[0].source.issn | 2040-2295, 2040-2309 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2040-2295 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Healthcare Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jhe/2022/7315665.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Healthcare Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/7315665 |
| locations[1].id | pmid:35591941 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of healthcare engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35591941 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9113909 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Healthc Eng |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9113909 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5029165682 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0816-9906 |
| authorships[0].author.display_name | Peiying Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[0].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I38877650 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China |
| authorships[0].institutions[0].id | https://openalex.org/I38877650 |
| authorships[0].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhengzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peiying Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China, School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China |
| authorships[1].author.id | https://openalex.org/A5100430941 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-2602-8941 |
| authorships[1].author.display_name | Longfei Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I38877650 |
| authorships[1].affiliations[1].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210145761 |
| authorships[1].affiliations[2].raw_affiliation_string | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[1].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[1].institutions[1].id | https://openalex.org/I38877650 |
| authorships[1].institutions[1].ror | https://ror.org/04ypx8c21 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I38877650 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Zhengzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Longfei Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China, School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China |
| authorships[2].author.id | https://openalex.org/A5100354220 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5400-2093 |
| authorships[2].author.display_name | Cheng Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210145761 |
| authorships[2].affiliations[0].raw_affiliation_string | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[2].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[3].author.id | https://openalex.org/A5015760298 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4835-8266 |
| authorships[3].author.display_name | Weijian Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210145761 |
| authorships[3].affiliations[0].raw_affiliation_string | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[3].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weijian Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[4].author.id | https://openalex.org/A5057590058 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8813-8527 |
| authorships[4].author.display_name | Guohua Zhao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[4].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China |
| authorships[4].institutions[0].id | https://openalex.org/I38877650 |
| authorships[4].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhengzhou University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guohua Zhao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China |
| authorships[5].author.id | https://openalex.org/A5100406237 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0575-6523 |
| authorships[5].author.display_name | Shanshan Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210145761 |
| authorships[5].affiliations[0].raw_affiliation_string | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[5].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shanshan Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
| authorships[6].author.id | https://openalex.org/A5100748031 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8779-6184 |
| authorships[6].author.display_name | Meiyun Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[6].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210133534 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450003, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210133534 |
| authorships[6].institutions[0].ror | https://ror.org/03f72zw41 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210133534 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Henan Provincial People's Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I38877650 |
| authorships[6].institutions[1].ror | https://ror.org/04ypx8c21 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I38877650 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Zhengzhou University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Meiyun Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China, Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450003, China |
| authorships[7].author.id | https://openalex.org/A5080806594 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2284-5763 |
| authorships[7].author.display_name | Yusong Lin |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[7].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I38877650 |
| authorships[7].affiliations[1].raw_affiliation_string | School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I38877650 |
| authorships[7].affiliations[2].raw_affiliation_string | Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, China |
| authorships[7].institutions[0].id | https://openalex.org/I38877650 |
| authorships[7].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Zhengzhou University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yusong Lin |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China, Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, China, School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jhe/2022/7315665.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma Grading |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W3208778134, https://openalex.org/W3005931108, https://openalex.org/W4386951147, https://openalex.org/W2887359201, https://openalex.org/W4308767530, https://openalex.org/W2362999506, https://openalex.org/W4205170363, https://openalex.org/W4223451915, https://openalex.org/W4220833452, https://openalex.org/W2353418361 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1155/2022/7315665 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36625193 |
| best_oa_location.source.issn | 2040-2295, 2040-2309 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2040-2295 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Healthcare Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2022/7315665.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Healthcare Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/7315665 |
| primary_location.id | doi:10.1155/2022/7315665 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36625193 |
| primary_location.source.issn | 2040-2295, 2040-2309 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2040-2295 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Healthcare Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2022/7315665.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Healthcare Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/7315665 |
| publication_date | 2022-05-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2418403565, https://openalex.org/W2923221258, https://openalex.org/W2123498585, https://openalex.org/W2935714260, https://openalex.org/W3194114104, https://openalex.org/W2793691907, https://openalex.org/W3074741277, https://openalex.org/W3199551447, https://openalex.org/W3206394563, https://openalex.org/W3135005580, https://openalex.org/W2887063112, https://openalex.org/W2891168939, https://openalex.org/W2900530921, https://openalex.org/W2912909565, https://openalex.org/W2889050087, https://openalex.org/W3027411515, https://openalex.org/W3015500759, https://openalex.org/W2885006767, https://openalex.org/W2775196165, https://openalex.org/W2519887557, https://openalex.org/W3152893301, https://openalex.org/W2624431344, https://openalex.org/W2890779863, https://openalex.org/W2948519073, https://openalex.org/W2962837172, https://openalex.org/W3002476946, https://openalex.org/W3035230119, https://openalex.org/W3034265573, https://openalex.org/W2618530766, https://openalex.org/W1686810756, https://openalex.org/W2097117768, https://openalex.org/W2194775991, https://openalex.org/W2946948417, https://openalex.org/W2907492528, https://openalex.org/W1641498739, https://openalex.org/W2970971581, https://openalex.org/W2971933740, https://openalex.org/W2955425717, https://openalex.org/W2964015378, https://openalex.org/W3134475970, https://openalex.org/W4210257598, https://openalex.org/W4294558607, https://openalex.org/W4295312788 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 51, 87, 112, 149, 216, 222 |
| abstract_inverted_index.3D | 150 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.an | 19, 187 |
| abstract_inverted_index.as | 18, 127 |
| abstract_inverted_index.by | 136, 173 |
| abstract_inverted_index.in | 31, 37, 73, 109, 148, 158, 178, 193, 241 |
| abstract_inverted_index.is | 4, 99, 114, 171 |
| abstract_inverted_index.of | 120, 132, 196 |
| abstract_inverted_index.on | 211 |
| abstract_inverted_index.to | 27, 101, 117 |
| abstract_inverted_index.The | 123, 152, 167, 181, 227 |
| abstract_inverted_index.all | 179 |
| abstract_inverted_index.and | 9, 64, 139, 221 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.can | 185, 234 |
| abstract_inverted_index.due | 26 |
| abstract_inverted_index.for | 6, 23, 244 |
| abstract_inverted_index.is, | 215 |
| abstract_inverted_index.its | 28 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.one | 224 |
| abstract_inverted_index.the | 34, 67, 74, 104, 118, 128, 137, 140, 143, 146, 156, 162, 175, 194, 202, 231, 237 |
| abstract_inverted_index.two | 212 |
| abstract_inverted_index.(MR) | 77 |
| abstract_inverted_index.CNN, | 138 |
| abstract_inverted_index.data | 49, 243 |
| abstract_inverted_index.each | 159 |
| abstract_inverted_index.fuse | 103, 236 |
| abstract_inverted_index.have | 60 |
| abstract_inverted_index.rich | 68 |
| abstract_inverted_index.step | 192 |
| abstract_inverted_index.that | 214, 230 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.tool | 22 |
| abstract_inverted_index.were | 209 |
| abstract_inverted_index.with | 47, 80 |
| abstract_inverted_index.data. | 122 |
| abstract_inverted_index.edges | 141 |
| abstract_inverted_index.final | 168 |
| abstract_inverted_index.fully | 62 |
| abstract_inverted_index.fused | 66, 176 |
| abstract_inverted_index.graph | 89, 113 |
| abstract_inverted_index.mpMRI | 48, 93, 121, 197, 242 |
| abstract_inverted_index.novel | 88 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.tumor | 38, 69, 105 |
| abstract_inverted_index.while | 200 |
| abstract_inverted_index.(named | 97, 219, 225 |
| abstract_inverted_index.better | 245 |
| abstract_inverted_index.fusion | 95, 199 |
| abstract_inverted_index.glioma | 2, 24, 44, 129, 169, 246 |
| abstract_inverted_index.images | 78 |
| abstract_inverted_index.method | 154, 233 |
| abstract_inverted_index.module | 96, 184 |
| abstract_inverted_index.mpMRI. | 110 |
| abstract_inverted_index.neural | 53 |
| abstract_inverted_index.paper, | 86 |
| abstract_inverted_index.public | 217 |
| abstract_inverted_index.serves | 17 |
| abstract_inverted_index.slices | 134, 147 |
| abstract_inverted_index.vertex | 160 |
| abstract_inverted_index.(mpMRI) | 16 |
| abstract_inverted_index.between | 145, 164, 205 |
| abstract_inverted_index.dataset | 218 |
| abstract_inverted_index.defined | 126 |
| abstract_inverted_index.grading | 3, 45, 106, 130, 170, 238, 247 |
| abstract_inverted_index.imaging | 15, 82 |
| abstract_inverted_index.method. | 56 |
| abstract_inverted_index.network | 54, 91 |
| abstract_inverted_index.private | 223 |
| abstract_inverted_index.process | 195 |
| abstract_inverted_index.reflect | 142 |
| abstract_inverted_index.results | 46, 228 |
| abstract_inverted_index.slices. | 207 |
| abstract_inverted_index.studies | 41, 59 |
| abstract_inverted_index.updates | 155 |
| abstract_inverted_index.volume. | 151 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.MMIF-GCN | 183 |
| abstract_inverted_index.Previous | 40 |
| abstract_inverted_index.achieved | 42 |
| abstract_inverted_index.acquired | 79 |
| abstract_inverted_index.adjacent | 165, 206 |
| abstract_inverted_index.clinical | 7 |
| abstract_inverted_index.features | 131 |
| abstract_inverted_index.indicate | 229 |
| abstract_inverted_index.learning | 191 |
| abstract_inverted_index.magnetic | 13, 75 |
| abstract_inverted_index.patients | 25 |
| abstract_inverted_index.proposed | 100, 153, 182, 232 |
| abstract_inverted_index.provided | 72, 240 |
| abstract_inverted_index.relevant | 107 |
| abstract_inverted_index.superior | 29 |
| abstract_inverted_index.tissues. | 39 |
| abstract_inverted_index.vertices | 124 |
| abstract_inverted_index.MMIF-GCN) | 98 |
| abstract_inverted_index.according | 116 |
| abstract_inverted_index.combining | 174 |
| abstract_inverted_index.conducted | 172, 210 |
| abstract_inverted_index.datasets, | 213 |
| abstract_inverted_index.different | 81, 133 |
| abstract_inverted_index.distances | 144 |
| abstract_inverted_index.essential | 5 |
| abstract_inverted_index.exploited | 63 |
| abstract_inverted_index.extracted | 135 |
| abstract_inverted_index.important | 20 |
| abstract_inverted_index.introduce | 186 |
| abstract_inverted_index.nonlinear | 189 |
| abstract_inverted_index.promising | 43 |
| abstract_inverted_index.resonance | 14, 76 |
| abstract_inverted_index.utilizing | 50 |
| abstract_inverted_index.vertices. | 166, 180 |
| abstract_inverted_index.BraTS2020) | 220 |
| abstract_inverted_index.additional | 188 |
| abstract_inverted_index.contextual | 35, 70 |
| abstract_inverted_index.describing | 32 |
| abstract_inverted_index.diagnostic | 21 |
| abstract_inverted_index.positional | 203 |
| abstract_inverted_index.prognostic | 10 |
| abstract_inverted_index.(CNN)-based | 55 |
| abstract_inverted_index.(GCN)-based | 92 |
| abstract_inverted_index.Experiments | 208 |
| abstract_inverted_index.considering | 161 |
| abstract_inverted_index.constructed | 115 |
| abstract_inverted_index.effectively | 65, 235 |
| abstract_inverted_index.evaluation. | 11 |
| abstract_inverted_index.information | 36, 71, 94, 108, 157, 177, 198, 239 |
| abstract_inverted_index.interaction | 163 |
| abstract_inverted_index.maintaining | 201 |
| abstract_inverted_index.parameters. | 83 |
| abstract_inverted_index.performance | 30 |
| abstract_inverted_index.performance. | 248 |
| abstract_inverted_index.preoperative | 1 |
| abstract_inverted_index.relationship | 204 |
| abstract_inverted_index.Specifically, | 111 |
| abstract_inverted_index.convolutional | 52, 90 |
| abstract_inverted_index.noninvasively | 33 |
| abstract_inverted_index.representation | 190 |
| abstract_inverted_index.Multiparametric | 12 |
| abstract_inverted_index.characteristics | 119 |
| abstract_inverted_index.comprehensively | 102 |
| abstract_inverted_index.decision-making | 8 |
| abstract_inverted_index.GliomaHPPH2018). | 226 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5080806594 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I38877650 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.66800994 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |