MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1910.05449
Predicting human behavior is a difficult and crucial task required for motion planning. It is challenging in large part due to the highly uncertain and multi-modal set of possible outcomes in real-world domains such as autonomous driving. Beyond single MAP trajectory prediction, obtaining an accurate probability distribution of the future is an area of active interest. We present MultiPath, which leverages a fixed set of future state-sequence anchors that correspond to modes of the trajectory distribution. At inference, our model predicts a discrete distribution over the anchors and, for each anchor, regresses offsets from anchor waypoints along with uncertainties, yielding a Gaussian mixture at each time step. Our model is efficient, requiring only one forward inference pass to obtain multi-modal future distributions, and the output is parametric, allowing compact communication and analytical probabilistic queries. We show on several datasets that our model achieves more accurate predictions, and compared to sampling baselines, does so with an order of magnitude fewer trajectories.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1910.05449
- https://arxiv.org/pdf/1910.05449
- OA Status
- green
- Cited By
- 137
- References
- 28
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2980160556
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2980160556Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1910.05449Digital Object Identifier
- Title
-
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-12Full publication date if available
- Authors
-
Yuning Chai, Benjamin Sapp, Mayank Bansal, Dragomir AnguelovList of authors in order
- Landing page
-
https://arxiv.org/abs/1910.05449Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1910.05449Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1910.05449Direct OA link when available
- Concepts
-
Trajectory, Computer science, Multipath propagation, Probabilistic logic, Inference, Parametric statistics, Modal, Set (abstract data type), Gaussian, Gaussian process, Sequence (biology), Probability distribution, Algorithm, Artificial intelligence, Mathematics, Statistics, Biology, Astronomy, Genetics, Computer network, Chemistry, Quantum mechanics, Polymer chemistry, Physics, Programming language, Channel (broadcasting)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
137Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 4, 2023: 3, 2022: 8, 2021: 68Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2980160556 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1910.05449 |
| ids.doi | https://doi.org/10.48550/arxiv.1910.05449 |
| ids.mag | 2980160556 |
| ids.openalex | https://openalex.org/W2980160556 |
| fwci | |
| type | preprint |
| title | MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.989300012588501 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C13662910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7135629653930664 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[0].display_name | Trajectory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6963726282119751 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C161218011 |
| concepts[2].level | 3 |
| concepts[2].score | 0.693416953086853 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11827794 |
| concepts[2].display_name | Multipath propagation |
| concepts[3].id | https://openalex.org/C49937458 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6432968974113464 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[3].display_name | Probabilistic logic |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6025689244270325 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C117251300 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5502778887748718 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[5].display_name | Parametric statistics |
| concepts[6].id | https://openalex.org/C71139939 |
| concepts[6].level | 2 |
| concepts[6].score | 0.542956531047821 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[6].display_name | Modal |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5193487405776978 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C163716315 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5125479698181152 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[8].display_name | Gaussian |
| concepts[9].id | https://openalex.org/C61326573 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4500001072883606 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[9].display_name | Gaussian process |
| concepts[10].id | https://openalex.org/C2778112365 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44119471311569214 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[10].display_name | Sequence (biology) |
| concepts[11].id | https://openalex.org/C149441793 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42764949798583984 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[11].display_name | Probability distribution |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4063042402267456 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3308878540992737 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.20796191692352295 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12045970559120178 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C1276947 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[17].display_name | Astronomy |
| concepts[18].id | https://openalex.org/C54355233 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[18].display_name | Genetics |
| concepts[19].id | https://openalex.org/C31258907 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[19].display_name | Computer network |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C188027245 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[22].display_name | Polymer chemistry |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C199360897 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[24].display_name | Programming language |
| concepts[25].id | https://openalex.org/C127162648 |
| concepts[25].level | 2 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[25].display_name | Channel (broadcasting) |
| keywords[0].id | https://openalex.org/keywords/trajectory |
| keywords[0].score | 0.7135629653930664 |
| keywords[0].display_name | Trajectory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6963726282119751 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/multipath-propagation |
| keywords[2].score | 0.693416953086853 |
| keywords[2].display_name | Multipath propagation |
| keywords[3].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[3].score | 0.6432968974113464 |
| keywords[3].display_name | Probabilistic logic |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.6025689244270325 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/parametric-statistics |
| keywords[5].score | 0.5502778887748718 |
| keywords[5].display_name | Parametric statistics |
| keywords[6].id | https://openalex.org/keywords/modal |
| keywords[6].score | 0.542956531047821 |
| keywords[6].display_name | Modal |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.5193487405776978 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/gaussian |
| keywords[8].score | 0.5125479698181152 |
| keywords[8].display_name | Gaussian |
| keywords[9].id | https://openalex.org/keywords/gaussian-process |
| keywords[9].score | 0.4500001072883606 |
| keywords[9].display_name | Gaussian process |
| keywords[10].id | https://openalex.org/keywords/sequence |
| keywords[10].score | 0.44119471311569214 |
| keywords[10].display_name | Sequence (biology) |
| keywords[11].id | https://openalex.org/keywords/probability-distribution |
| keywords[11].score | 0.42764949798583984 |
| keywords[11].display_name | Probability distribution |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.4063042402267456 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3308878540992737 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.20796191692352295 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.12045970559120178 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1910.05449 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1910.05449 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1910.05449 |
| locations[1].id | mag:2980160556 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://arxiv.org/pdf/1910.05449.pdf |
| locations[2].id | doi:10.48550/arxiv.1910.05449 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1910.05449 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5079961895 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yuning Chai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuning Chai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014258241 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Benjamin Sapp |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Benjamin Sapp |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077640190 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5798-5352 |
| authorships[2].author.display_name | Mayank Bansal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mayank Bansal |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081024054 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Dragomir Anguelov |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dragomir Anguelov |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1910.05449 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W3035671534, https://openalex.org/W2967177252, https://openalex.org/W2963001155, https://openalex.org/W2962687116, https://openalex.org/W2898900571, https://openalex.org/W2607296803, https://openalex.org/W2424778531, https://openalex.org/W2982745079, https://openalex.org/W2970116586, https://openalex.org/W2798930779, https://openalex.org/W2955189650, https://openalex.org/W2963759562, https://openalex.org/W2940129212, https://openalex.org/W2894978157, https://openalex.org/W3028769608, https://openalex.org/W2963906196, https://openalex.org/W3034722190, https://openalex.org/W2194775991, https://openalex.org/W3062588417, https://openalex.org/W2905173465 |
| cited_by_count | 137 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 68 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 48 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1910.05449 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1910.05449 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1910.05449 |
| primary_location.id | pmh:oai:arXiv.org:1910.05449 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1910.05449 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1910.05449 |
| publication_date | 2019-10-12 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2967177252, https://openalex.org/W2963001155, https://openalex.org/W2962715980, https://openalex.org/W2767621168, https://openalex.org/W2911273949, https://openalex.org/W2167052694, https://openalex.org/W1663973292, https://openalex.org/W2798930779, https://openalex.org/W2769282630, https://openalex.org/W2894978157, https://openalex.org/W2963858432, https://openalex.org/W2532516272, https://openalex.org/W2600383743, https://openalex.org/W2963759562, https://openalex.org/W2424778531, https://openalex.org/W2336416123, https://openalex.org/W2898900571, https://openalex.org/W2777985721, https://openalex.org/W2146183743, https://openalex.org/W2793483732, https://openalex.org/W2607296803, https://openalex.org/W2068730032, https://openalex.org/W2013640163, https://openalex.org/W2194775991, https://openalex.org/W2943516367, https://openalex.org/W2232565949, https://openalex.org/W2963888093, https://openalex.org/W2914524146 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 4, 61, 81, 100 |
| abstract_inverted_index.At | 76 |
| abstract_inverted_index.It | 13 |
| abstract_inverted_index.We | 56, 134 |
| abstract_inverted_index.an | 43, 51, 154 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.at | 103 |
| abstract_inverted_index.in | 16, 30 |
| abstract_inverted_index.is | 3, 14, 50, 109, 125 |
| abstract_inverted_index.of | 27, 47, 53, 64, 72, 156 |
| abstract_inverted_index.on | 136 |
| abstract_inverted_index.so | 152 |
| abstract_inverted_index.to | 20, 70, 117, 148 |
| abstract_inverted_index.MAP | 39 |
| abstract_inverted_index.Our | 107 |
| abstract_inverted_index.and | 6, 24, 122, 130, 146 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 10, 88 |
| abstract_inverted_index.one | 113 |
| abstract_inverted_index.our | 78, 140 |
| abstract_inverted_index.set | 26, 63 |
| abstract_inverted_index.the | 21, 48, 73, 85, 123 |
| abstract_inverted_index.and, | 87 |
| abstract_inverted_index.area | 52 |
| abstract_inverted_index.does | 151 |
| abstract_inverted_index.each | 89, 104 |
| abstract_inverted_index.from | 93 |
| abstract_inverted_index.more | 143 |
| abstract_inverted_index.only | 112 |
| abstract_inverted_index.over | 84 |
| abstract_inverted_index.part | 18 |
| abstract_inverted_index.pass | 116 |
| abstract_inverted_index.show | 135 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.that | 68, 139 |
| abstract_inverted_index.time | 105 |
| abstract_inverted_index.with | 97, 153 |
| abstract_inverted_index.along | 96 |
| abstract_inverted_index.fewer | 158 |
| abstract_inverted_index.fixed | 62 |
| abstract_inverted_index.human | 1 |
| abstract_inverted_index.large | 17 |
| abstract_inverted_index.model | 79, 108, 141 |
| abstract_inverted_index.modes | 71 |
| abstract_inverted_index.order | 155 |
| abstract_inverted_index.step. | 106 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.Beyond | 37 |
| abstract_inverted_index.active | 54 |
| abstract_inverted_index.anchor | 94 |
| abstract_inverted_index.future | 49, 65, 120 |
| abstract_inverted_index.highly | 22 |
| abstract_inverted_index.motion | 11 |
| abstract_inverted_index.obtain | 118 |
| abstract_inverted_index.output | 124 |
| abstract_inverted_index.single | 38 |
| abstract_inverted_index.anchor, | 90 |
| abstract_inverted_index.anchors | 67, 86 |
| abstract_inverted_index.compact | 128 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.domains | 32 |
| abstract_inverted_index.forward | 114 |
| abstract_inverted_index.mixture | 102 |
| abstract_inverted_index.offsets | 92 |
| abstract_inverted_index.present | 57 |
| abstract_inverted_index.several | 137 |
| abstract_inverted_index.Gaussian | 101 |
| abstract_inverted_index.accurate | 44, 144 |
| abstract_inverted_index.achieves | 142 |
| abstract_inverted_index.allowing | 127 |
| abstract_inverted_index.behavior | 2 |
| abstract_inverted_index.compared | 147 |
| abstract_inverted_index.datasets | 138 |
| abstract_inverted_index.discrete | 82 |
| abstract_inverted_index.driving. | 36 |
| abstract_inverted_index.outcomes | 29 |
| abstract_inverted_index.possible | 28 |
| abstract_inverted_index.predicts | 80 |
| abstract_inverted_index.queries. | 133 |
| abstract_inverted_index.required | 9 |
| abstract_inverted_index.sampling | 149 |
| abstract_inverted_index.yielding | 99 |
| abstract_inverted_index.difficult | 5 |
| abstract_inverted_index.inference | 115 |
| abstract_inverted_index.interest. | 55 |
| abstract_inverted_index.leverages | 60 |
| abstract_inverted_index.magnitude | 157 |
| abstract_inverted_index.obtaining | 42 |
| abstract_inverted_index.planning. | 12 |
| abstract_inverted_index.regresses | 91 |
| abstract_inverted_index.requiring | 111 |
| abstract_inverted_index.uncertain | 23 |
| abstract_inverted_index.waypoints | 95 |
| abstract_inverted_index.MultiPath, | 58 |
| abstract_inverted_index.Predicting | 0 |
| abstract_inverted_index.analytical | 131 |
| abstract_inverted_index.autonomous | 35 |
| abstract_inverted_index.baselines, | 150 |
| abstract_inverted_index.correspond | 69 |
| abstract_inverted_index.efficient, | 110 |
| abstract_inverted_index.inference, | 77 |
| abstract_inverted_index.real-world | 31 |
| abstract_inverted_index.trajectory | 40, 74 |
| abstract_inverted_index.challenging | 15 |
| abstract_inverted_index.multi-modal | 25, 119 |
| abstract_inverted_index.parametric, | 126 |
| abstract_inverted_index.prediction, | 41 |
| abstract_inverted_index.probability | 45 |
| abstract_inverted_index.distribution | 46, 83 |
| abstract_inverted_index.predictions, | 145 |
| abstract_inverted_index.communication | 129 |
| abstract_inverted_index.distribution. | 75 |
| abstract_inverted_index.probabilistic | 132 |
| abstract_inverted_index.trajectories. | 159 |
| abstract_inverted_index.distributions, | 121 |
| abstract_inverted_index.state-sequence | 66 |
| abstract_inverted_index.uncertainties, | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |