Multiple imputation of incomplete multilevel data using Heckman selection models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1002/sim.9965
Missing data is a common problem in medical research, and is commonly addressed using multiple imputation. Although traditional imputation methods allow for valid statistical inference when data are missing at random (MAR), their implementation is problematic when the presence of missingness depends on unobserved variables, that is, the data are missing not at random (MNAR). Unfortunately, this MNAR situation is rather common, in observational studies, registries and other sources of real‐world data. While several imputation methods have been proposed for addressing individual studies when data are MNAR, their application and validity in large datasets with multilevel structure remains unclear. We therefore explored the consequence of MNAR data in hierarchical data in‐depth, and proposed a novel multilevel imputation method for common missing patterns in clustered datasets. This method is based on the principles of Heckman selection models and adopts a two‐stage meta‐analysis approach to impute binary and continuous variables that may be outcomes or predictors and that are systematically or sporadically missing. After evaluating the proposed imputation model in simulated scenarios, we illustrate it use in a cross‐sectional community survey to estimate the prevalence of malaria parasitemia in children aged 2‐10 years in five regions in Uganda.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/sim.9965
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965
- OA Status
- hybrid
- Cited By
- 6
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4317543377
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4317543377Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/sim.9965Digital Object Identifier
- Title
-
Multiple imputation of incomplete multilevel data using Heckman selection modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-11Full publication date if available
- Authors
-
Johanna Muñoz, Orestis Efthimiou, Vincent Audigier, Valentijn M. T. de Jong, Thomas P. A. DebrayList of authors in order
- Landing page
-
https://doi.org/10.1002/sim.9965Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965Direct OA link when available
- Concepts
-
Missing data, Imputation (statistics), Inference, Computer science, Statistics, Econometrics, Data mining, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4317543377 |
|---|---|
| doi | https://doi.org/10.1002/sim.9965 |
| ids.doi | https://doi.org/10.1002/sim.9965 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38073512 |
| ids.openalex | https://openalex.org/W4317543377 |
| fwci | 3.83135521 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D002648 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Child |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003430 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Cross-Sectional Studies |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D035843 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Biomedical Research |
| mesh[4].qualifier_ui | Q000453 |
| mesh[4].descriptor_ui | D014454 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | epidemiology |
| mesh[4].descriptor_name | Uganda |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D002648 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Child |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003430 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Cross-Sectional Studies |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D035843 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Biomedical Research |
| mesh[9].qualifier_ui | Q000453 |
| mesh[9].descriptor_ui | D014454 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | epidemiology |
| mesh[9].descriptor_name | Uganda |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D002648 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Child |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D003430 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Cross-Sectional Studies |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D035843 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Biomedical Research |
| mesh[14].qualifier_ui | Q000453 |
| mesh[14].descriptor_ui | D014454 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | epidemiology |
| mesh[14].descriptor_name | Uganda |
| type | article |
| title | Multiple imputation of incomplete multilevel data using Heckman selection models |
| awards[0].id | https://openalex.org/G2070512549 |
| awards[0].funder_id | https://openalex.org/F4320332999 |
| awards[0].display_name | |
| awards[0].funder_award_id | ReCoDID 825746 |
| awards[0].funder_display_name | Horizon 2020 Framework Programme |
| biblio.issue | 3 |
| biblio.volume | 43 |
| biblio.last_page | 533 |
| biblio.first_page | 514 |
| topics[0].id | https://openalex.org/T10243 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Bayesian Inference |
| topics[1].id | https://openalex.org/T11539 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9833999872207642 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Survey Methodology and Nonresponse |
| topics[2].id | https://openalex.org/T10845 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9664999842643738 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Advanced Causal Inference Techniques |
| funders[0].id | https://openalex.org/F4320332999 |
| funders[0].ror | https://ror.org/00k4n6c32 |
| funders[0].display_name | Horizon 2020 Framework Programme |
| is_xpac | False |
| apc_list.value | 4940 |
| apc_list.currency | USD |
| apc_list.value_usd | 4940 |
| apc_paid.value | 4940 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4940 |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8892502784729004 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C58041806 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8370593786239624 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[1].display_name | Imputation (statistics) |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5531347393989563 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5056085586547852 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4894670248031616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43313223123550415 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35390716791152954 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.19122958183288574 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14863282442092896 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.8892502784729004 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/imputation |
| keywords[1].score | 0.8370593786239624 |
| keywords[1].display_name | Imputation (statistics) |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.5531347393989563 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5056085586547852 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.4894670248031616 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.43313223123550415 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.35390716791152954 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.19122958183288574 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.14863282442092896 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1002/sim.9965 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S55189604 |
| locations[0].source.issn | 0277-6715, 1097-0258 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0277-6715 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistics in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistics in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1002/sim.9965 |
| locations[1].id | pmid:38073512 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Statistics in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38073512 |
| locations[2].id | pmh:oai:HAL:hal-03940754v1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Preprints, Working Papers, ... |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | 2025 |
| locations[2].landing_page_url | https://hal.science/hal-03940754 |
| locations[3].id | pmh:oai:HAL:hal-04336182v1 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306402512 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[3].source.host_organization | https://openalex.org/I1294671590 |
| locations[3].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[3].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Journal articles |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Statistics in Medicine, 2023, 43 (3), ⟨10.1002/sim.9965⟩ |
| locations[3].landing_page_url | https://hal.science/hal-04336182 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5038601688 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2384-5415 |
| authorships[0].author.display_name | Johanna Muñoz |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I193662353, https://openalex.org/I3018483916 |
| authorships[0].affiliations[0].raw_affiliation_string | Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I3018483916 |
| authorships[0].institutions[0].ror | https://ror.org/0575yy874 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I3018483916 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | University Medical Center Utrecht |
| authorships[0].institutions[1].id | https://openalex.org/I193662353 |
| authorships[0].institutions[1].ror | https://ror.org/04pp8hn57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I193662353 |
| authorships[0].institutions[1].country_code | NL |
| authorships[0].institutions[1].display_name | Utrecht University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Johanna Muñoz |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands |
| authorships[1].author.id | https://openalex.org/A5065638475 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0955-7572 |
| authorships[1].author.display_name | Orestis Efthimiou |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I118564535 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I118564535, https://openalex.org/I4210135124 |
| authorships[1].affiliations[1].raw_affiliation_string | Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I4210135124 |
| authorships[1].institutions[0].ror | https://ror.org/038esz880 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I2802229882, https://openalex.org/I4210135124, https://openalex.org/I97565354 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | Institute of Social and Preventive Medicine |
| authorships[1].institutions[1].id | https://openalex.org/I118564535 |
| authorships[1].institutions[1].ror | https://ror.org/02k7v4d05 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I118564535 |
| authorships[1].institutions[1].country_code | CH |
| authorships[1].institutions[1].display_name | University of Bern |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Orestis Efthimiou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland, Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland |
| authorships[2].author.id | https://openalex.org/A5055168255 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4169-7866 |
| authorships[2].author.display_name | Vincent Audigier |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I124158823, https://openalex.org/I4210145724 |
| authorships[2].affiliations[0].raw_affiliation_string | Conservatoire national des arts et métiers (CNAM) Laboratoire CEDRIC‐MSDMA Paris France |
| authorships[2].institutions[0].id | https://openalex.org/I4210145724 |
| authorships[2].institutions[0].ror | https://ror.org/044j5mm75 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210145724 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Centre d'Etudes et De Recherche en Informatique et Communications |
| authorships[2].institutions[1].id | https://openalex.org/I124158823 |
| authorships[2].institutions[1].ror | https://ror.org/0175hh227 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I124158823, https://openalex.org/I4210134562 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Conservatoire National des Arts et Métiers |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vincent Audigier |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Conservatoire national des arts et métiers (CNAM) Laboratoire CEDRIC‐MSDMA Paris France |
| authorships[3].author.id | https://openalex.org/A5000598059 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9921-3468 |
| authorships[3].author.display_name | Valentijn M. T. de Jong |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193662353, https://openalex.org/I3018483916 |
| authorships[3].affiliations[0].raw_affiliation_string | Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I1297934274 |
| authorships[3].affiliations[1].raw_affiliation_string | Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, The Netherlands |
| authorships[3].institutions[0].id | https://openalex.org/I1297934274 |
| authorships[3].institutions[0].ror | https://ror.org/01z0wsw92 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1297934274, https://openalex.org/I1320481043 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | European Medicines Agency |
| authorships[3].institutions[1].id | https://openalex.org/I3018483916 |
| authorships[3].institutions[1].ror | https://ror.org/0575yy874 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I3018483916 |
| authorships[3].institutions[1].country_code | NL |
| authorships[3].institutions[1].display_name | University Medical Center Utrecht |
| authorships[3].institutions[2].id | https://openalex.org/I193662353 |
| authorships[3].institutions[2].ror | https://ror.org/04pp8hn57 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I193662353 |
| authorships[3].institutions[2].country_code | NL |
| authorships[3].institutions[2].display_name | Utrecht University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Valentijn M. T. de Jong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, The Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands |
| authorships[4].author.id | https://openalex.org/A5002390430 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1790-2719 |
| authorships[4].author.display_name | Thomas P. A. Debray |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1322731696 |
| authorships[4].affiliations[0].raw_affiliation_string | Smart Data Analysis and Statistics, Utrecht, The Netherlands |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I193662353, https://openalex.org/I3018483916 |
| authorships[4].affiliations[1].raw_affiliation_string | Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I1322731696 |
| authorships[4].institutions[0].ror | https://ror.org/0408v4c28 |
| authorships[4].institutions[0].type | other |
| authorships[4].institutions[0].lineage | https://openalex.org/I1322731696 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Centraal Bureau voor de Statistiek |
| authorships[4].institutions[1].id | https://openalex.org/I3018483916 |
| authorships[4].institutions[1].ror | https://ror.org/0575yy874 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I3018483916 |
| authorships[4].institutions[1].country_code | NL |
| authorships[4].institutions[1].display_name | University Medical Center Utrecht |
| authorships[4].institutions[2].id | https://openalex.org/I193662353 |
| authorships[4].institutions[2].ror | https://ror.org/04pp8hn57 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I193662353 |
| authorships[4].institutions[2].country_code | NL |
| authorships[4].institutions[2].display_name | Utrecht University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Thomas P. A. Debray |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands, Smart Data Analysis and Statistics, Utrecht, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multiple imputation of incomplete multilevel data using Heckman selection models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10243 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Bayesian Inference |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W2055961818, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/sim.9965 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S55189604 |
| best_oa_location.source.issn | 0277-6715, 1097-0258 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0277-6715 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Statistics in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Statistics in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1002/sim.9965 |
| primary_location.id | doi:10.1002/sim.9965 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S55189604 |
| primary_location.source.issn | 0277-6715, 1097-0258 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0277-6715 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistics in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.9965 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistics in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1002/sim.9965 |
| publication_date | 2023-12-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2119852447, https://openalex.org/W1810100348, https://openalex.org/W2157222017, https://openalex.org/W2100358124, https://openalex.org/W2038637022, https://openalex.org/W1493044792, https://openalex.org/W2293452164, https://openalex.org/W2889489337, https://openalex.org/W2729515931, https://openalex.org/W2586627884, https://openalex.org/W3007660157, https://openalex.org/W3123059484, https://openalex.org/W3006310789, https://openalex.org/W2010670304, https://openalex.org/W1968692896, https://openalex.org/W2800836210, https://openalex.org/W2113178124, https://openalex.org/W2108116635, https://openalex.org/W2523248510, https://openalex.org/W2154449833, https://openalex.org/W2118502261, https://openalex.org/W2775363893, https://openalex.org/W3098865414, https://openalex.org/W1946484916, https://openalex.org/W2948297848, https://openalex.org/W2952612365, https://openalex.org/W1592576206, https://openalex.org/W4399649685, https://openalex.org/W4399584394, https://openalex.org/W2582743722, https://openalex.org/W4399523451, https://openalex.org/W3208615434, https://openalex.org/W2809993608 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 3, 113, 138, 175 |
| abstract_inverted_index.We | 99 |
| abstract_inverted_index.at | 29, 52 |
| abstract_inverted_index.be | 150 |
| abstract_inverted_index.in | 6, 62, 91, 107, 122, 167, 174, 186, 191, 194 |
| abstract_inverted_index.is | 2, 10, 34, 59, 127 |
| abstract_inverted_index.it | 172 |
| abstract_inverted_index.of | 39, 69, 104, 132, 183 |
| abstract_inverted_index.on | 42, 129 |
| abstract_inverted_index.or | 152, 158 |
| abstract_inverted_index.to | 142, 179 |
| abstract_inverted_index.we | 170 |
| abstract_inverted_index.and | 9, 66, 89, 111, 136, 145, 154 |
| abstract_inverted_index.are | 27, 49, 85, 156 |
| abstract_inverted_index.for | 21, 79, 118 |
| abstract_inverted_index.is, | 46 |
| abstract_inverted_index.may | 149 |
| abstract_inverted_index.not | 51 |
| abstract_inverted_index.the | 37, 47, 102, 130, 163, 181 |
| abstract_inverted_index.use | 173 |
| abstract_inverted_index.MNAR | 57, 105 |
| abstract_inverted_index.This | 125 |
| abstract_inverted_index.aged | 188 |
| abstract_inverted_index.been | 77 |
| abstract_inverted_index.data | 1, 26, 48, 84, 106, 109 |
| abstract_inverted_index.five | 192 |
| abstract_inverted_index.have | 76 |
| abstract_inverted_index.that | 45, 148, 155 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.when | 25, 36, 83 |
| abstract_inverted_index.with | 94 |
| abstract_inverted_index.After | 161 |
| abstract_inverted_index.MNAR, | 86 |
| abstract_inverted_index.While | 72 |
| abstract_inverted_index.allow | 20 |
| abstract_inverted_index.based | 128 |
| abstract_inverted_index.data. | 71 |
| abstract_inverted_index.large | 92 |
| abstract_inverted_index.model | 166 |
| abstract_inverted_index.novel | 114 |
| abstract_inverted_index.other | 67 |
| abstract_inverted_index.their | 32, 87 |
| abstract_inverted_index.using | 13 |
| abstract_inverted_index.valid | 22 |
| abstract_inverted_index.years | 190 |
| abstract_inverted_index.(MAR), | 31 |
| abstract_inverted_index.2‐10 | 189 |
| abstract_inverted_index.adopts | 137 |
| abstract_inverted_index.binary | 144 |
| abstract_inverted_index.common | 4, 119 |
| abstract_inverted_index.impute | 143 |
| abstract_inverted_index.method | 117, 126 |
| abstract_inverted_index.models | 135 |
| abstract_inverted_index.random | 30, 53 |
| abstract_inverted_index.rather | 60 |
| abstract_inverted_index.survey | 178 |
| abstract_inverted_index.(MNAR). | 54 |
| abstract_inverted_index.Heckman | 133 |
| abstract_inverted_index.Missing | 0 |
| abstract_inverted_index.Uganda. | 195 |
| abstract_inverted_index.common, | 61 |
| abstract_inverted_index.depends | 41 |
| abstract_inverted_index.malaria | 184 |
| abstract_inverted_index.medical | 7 |
| abstract_inverted_index.methods | 19, 75 |
| abstract_inverted_index.missing | 28, 50, 120 |
| abstract_inverted_index.problem | 5 |
| abstract_inverted_index.regions | 193 |
| abstract_inverted_index.remains | 97 |
| abstract_inverted_index.several | 73 |
| abstract_inverted_index.sources | 68 |
| abstract_inverted_index.studies | 82 |
| abstract_inverted_index.Although | 16 |
| abstract_inverted_index.approach | 141 |
| abstract_inverted_index.children | 187 |
| abstract_inverted_index.commonly | 11 |
| abstract_inverted_index.datasets | 93 |
| abstract_inverted_index.estimate | 180 |
| abstract_inverted_index.explored | 101 |
| abstract_inverted_index.missing. | 160 |
| abstract_inverted_index.multiple | 14 |
| abstract_inverted_index.outcomes | 151 |
| abstract_inverted_index.patterns | 121 |
| abstract_inverted_index.presence | 38 |
| abstract_inverted_index.proposed | 78, 112, 164 |
| abstract_inverted_index.studies, | 64 |
| abstract_inverted_index.unclear. | 98 |
| abstract_inverted_index.validity | 90 |
| abstract_inverted_index.addressed | 12 |
| abstract_inverted_index.clustered | 123 |
| abstract_inverted_index.community | 177 |
| abstract_inverted_index.datasets. | 124 |
| abstract_inverted_index.inference | 24 |
| abstract_inverted_index.research, | 8 |
| abstract_inverted_index.selection | 134 |
| abstract_inverted_index.simulated | 168 |
| abstract_inverted_index.situation | 58 |
| abstract_inverted_index.structure | 96 |
| abstract_inverted_index.therefore | 100 |
| abstract_inverted_index.variables | 147 |
| abstract_inverted_index.addressing | 80 |
| abstract_inverted_index.continuous | 146 |
| abstract_inverted_index.evaluating | 162 |
| abstract_inverted_index.illustrate | 171 |
| abstract_inverted_index.imputation | 18, 74, 116, 165 |
| abstract_inverted_index.individual | 81 |
| abstract_inverted_index.multilevel | 95, 115 |
| abstract_inverted_index.predictors | 153 |
| abstract_inverted_index.prevalence | 182 |
| abstract_inverted_index.principles | 131 |
| abstract_inverted_index.registries | 65 |
| abstract_inverted_index.scenarios, | 169 |
| abstract_inverted_index.unobserved | 43 |
| abstract_inverted_index.variables, | 44 |
| abstract_inverted_index.application | 88 |
| abstract_inverted_index.consequence | 103 |
| abstract_inverted_index.imputation. | 15 |
| abstract_inverted_index.in‐depth, | 110 |
| abstract_inverted_index.missingness | 40 |
| abstract_inverted_index.parasitemia | 185 |
| abstract_inverted_index.problematic | 35 |
| abstract_inverted_index.statistical | 23 |
| abstract_inverted_index.traditional | 17 |
| abstract_inverted_index.two‐stage | 139 |
| abstract_inverted_index.hierarchical | 108 |
| abstract_inverted_index.real‐world | 70 |
| abstract_inverted_index.sporadically | 159 |
| abstract_inverted_index.observational | 63 |
| abstract_inverted_index.Unfortunately, | 55 |
| abstract_inverted_index.implementation | 33 |
| abstract_inverted_index.systematically | 157 |
| abstract_inverted_index.meta‐analysis | 140 |
| abstract_inverted_index.cross‐sectional | 176 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5038601688 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I193662353, https://openalex.org/I3018483916 |
| citation_normalized_percentile.value | 0.88637166 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |