Multiple Kernel Boosting Saliency Detection of Flame Image of Sintering Section Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3724/sp.j.1089.2021.18686
The flame image of the sintering section is usually interfered by smoke and halo, which would cause the blurring of flame edge and material layer in the image. In order to solve the problem that traditional saliency detection method based on two-dimensional image features is difficult to effectively obtain the actual saliency of the cross-sectional flame image, a saliency detection method based on boundary connectivity and multi-kernel Boosting is proposed. Firstly, the color de-correlation is used in the process of image color space conversion. Boundary connectivity and dark channel prior principle are used to obtain the initial saliency map. Secondly, the super-pixel region information, regional variance and regional contrast of the flame image are used to construct region descriptor, the multiple kernel Boosting algorithm based on support vector regression is used to generate the complementary saliency map on 4 scales. Finally, the initial saliency map and the complementary saliency map are fused to obtain the final saliency map. 600 flame images including manual labeling are used to compare the proposed method with other 5 existing methods and each stage of the proposed method is analyzed. P-R curve, F-measure, mean absolute error and running time are taken as evaluation indexes. The experimental results show that the proposed method is superior to the other 5 methods, and the detection performance of each stage is gradually enhanced, which lays a foundation for improving the effective information extraction of sintering flame section image.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3724/sp.j.1089.2021.18686
- https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CD
- OA Status
- bronze
- Cited By
- 1
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3212865669
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212865669Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3724/sp.j.1089.2021.18686Digital Object Identifier
- Title
-
Multiple Kernel Boosting Saliency Detection of Flame Image of Sintering SectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-01Full publication date if available
- Authors
-
Fubin Wang, Hefei Liu, Rui Wang, Jianghong He, Chen WuList of authors in order
- Landing page
-
https://doi.org/10.3724/sp.j.1089.2021.18686Publisher landing page
- PDF URL
-
https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CDDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CDDirect OA link when available
- Concepts
-
Boosting (machine learning), Artificial intelligence, Kernel (algebra), Computer science, Pattern recognition (psychology), Pixel, Image (mathematics), Mathematics, Support vector machine, Computer vision, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212865669 |
|---|---|
| doi | https://doi.org/10.3724/sp.j.1089.2021.18686 |
| ids.doi | https://doi.org/10.3724/sp.j.1089.2021.18686 |
| ids.mag | 3212865669 |
| ids.openalex | https://openalex.org/W3212865669 |
| fwci | 0.0 |
| type | article |
| title | Multiple Kernel Boosting Saliency Detection of Flame Image of Sintering Section |
| biblio.issue | 9 |
| biblio.volume | 33 |
| biblio.last_page | 1474 |
| biblio.first_page | 1466 |
| topics[0].id | https://openalex.org/T11659 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8144000172615051 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Advanced Image Fusion Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7090368270874023 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.640322208404541 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C74193536 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5350808501243591 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[2].display_name | Kernel (algebra) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.520888090133667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4800482988357544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46957868337631226 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4547656178474426 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4527183473110199 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C12267149 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44310688972473145 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[8].display_name | Support vector machine |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4068378210067749 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.7090368270874023 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.640322208404541 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/kernel |
| keywords[2].score | 0.5350808501243591 |
| keywords[2].display_name | Kernel (algebra) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.520888090133667 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4800482988357544 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.46957868337631226 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.4547656178474426 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.4527183473110199 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/support-vector-machine |
| keywords[8].score | 0.44310688972473145 |
| keywords[8].display_name | Support vector machine |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4068378210067749 |
| keywords[9].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.3724/sp.j.1089.2021.18686 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210220856 |
| locations[0].source.issn | 1003-9775 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1003-9775 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Computer-Aided Design & Computer Graphics |
| locations[0].source.host_organization | https://openalex.org/P4310319982 |
| locations[0].source.host_organization_name | Science Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319982 |
| locations[0].source.host_organization_lineage_names | Science Press |
| locations[0].license | |
| locations[0].pdf_url | https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CD |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Computer-Aided Design & Computer Graphics |
| locations[0].landing_page_url | https://doi.org/10.3724/sp.j.1089.2021.18686 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101678971 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6853-3853 |
| authorships[0].author.display_name | Fubin Wang |
| authorships[0].affiliations[0].raw_affiliation_string | 华北理工大学电气工程学院 唐山 063210 |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fubin Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 华北理工大学电气工程学院 唐山 063210 |
| authorships[1].author.id | https://openalex.org/A5020019504 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6533-7112 |
| authorships[1].author.display_name | Hefei Liu |
| authorships[1].affiliations[0].raw_affiliation_string | 华北理工大学电气工程学院 唐山 063210 |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hefei Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 华北理工大学电气工程学院 唐山 063210 |
| authorships[2].author.id | https://openalex.org/A5100619422 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5958-2234 |
| authorships[2].author.display_name | Rui Wang |
| authorships[2].affiliations[0].raw_affiliation_string | 华北理工大学电气工程学院 唐山 063210 |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rui Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 华北理工大学电气工程学院 唐山 063210 |
| authorships[3].author.id | https://openalex.org/A5068990717 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5884-4407 |
| authorships[3].author.display_name | Jianghong He |
| authorships[3].affiliations[0].raw_affiliation_string | 华北理工大学电气工程学院 唐山 063210 |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianghong He |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 华北理工大学电气工程学院 唐山 063210 |
| authorships[4].author.id | https://openalex.org/A5102825845 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6035-5004 |
| authorships[4].author.display_name | Chen Wu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I154341788 |
| authorships[4].affiliations[0].raw_affiliation_string | ) (Tang Steel International Engineering Technology Corp, Tangshan 063000 |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I137506752 |
| authorships[4].affiliations[1].raw_affiliation_string | ) (College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210) |
| authorships[4].institutions[0].id | https://openalex.org/I137506752 |
| authorships[4].institutions[0].ror | https://ror.org/04z4wmb81 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I137506752 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | North China University of Science and Technology |
| authorships[4].institutions[1].id | https://openalex.org/I154341788 |
| authorships[4].institutions[1].ror | https://ror.org/00rfn0469 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I154341788 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Tangshan College |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chen Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ) (College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210), ) (Tang Steel International Engineering Technology Corp, Tangshan 063000 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CD |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multiple Kernel Boosting Saliency Detection of Flame Image of Sintering Section |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11659 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8144000172615051 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Advanced Image Fusion Techniques |
| related_works | https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W1549363203, https://openalex.org/W4231274751, https://openalex.org/W2154063878, https://openalex.org/W2556012038, https://openalex.org/W1489772951, https://openalex.org/W1518215897, https://openalex.org/W1538046993, https://openalex.org/W1566995892 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3724/sp.j.1089.2021.18686 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210220856 |
| best_oa_location.source.issn | 1003-9775 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1003-9775 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Computer-Aided Design & Computer Graphics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319982 |
| best_oa_location.source.host_organization_name | Science Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319982 |
| best_oa_location.source.host_organization_lineage_names | Science Press |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CD |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Computer-Aided Design & Computer Graphics |
| best_oa_location.landing_page_url | https://doi.org/10.3724/sp.j.1089.2021.18686 |
| primary_location.id | doi:10.3724/sp.j.1089.2021.18686 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210220856 |
| primary_location.source.issn | 1003-9775 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1003-9775 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Computer-Aided Design & Computer Graphics |
| primary_location.source.host_organization | https://openalex.org/P4310319982 |
| primary_location.source.host_organization_name | Science Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319982 |
| primary_location.source.host_organization_lineage_names | Science Press |
| primary_location.license | |
| primary_location.pdf_url | https://www.sciengine.com/doi/pdf/AC51AFE6AD3D4D5F82DA16960E8C68CD |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Computer-Aided Design & Computer Graphics |
| primary_location.landing_page_url | https://doi.org/10.3724/sp.j.1089.2021.18686 |
| publication_date | 2021-09-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1676314349, https://openalex.org/W3163925244, https://openalex.org/W2315287060, https://openalex.org/W4239147634, https://openalex.org/W2039313011, https://openalex.org/W2163352848, https://openalex.org/W1982075130, https://openalex.org/W2128254161, https://openalex.org/W21025885, https://openalex.org/W2047670868, https://openalex.org/W2294835218, https://openalex.org/W2967874865, https://openalex.org/W1918837316, https://openalex.org/W1876673668, https://openalex.org/W2118246710, https://openalex.org/W2994518137, https://openalex.org/W2128272608, https://openalex.org/W2303037199, https://openalex.org/W2150772522, https://openalex.org/W2759493593 |
| referenced_works_count | 20 |
| abstract_inverted_index.4 | 139 |
| abstract_inverted_index.5 | 174, 213 |
| abstract_inverted_index.a | 58, 227 |
| abstract_inverted_index.<p | 0 |
| abstract_inverted_index.In | 29 |
| abstract_inverted_index.as | 197 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 26, 77 |
| abstract_inverted_index.is | 8, 45, 69, 75, 130, 184, 208, 222 |
| abstract_inverted_index.of | 4, 20, 53, 80, 110, 180, 219, 235 |
| abstract_inverted_index.on | 41, 63, 126, 138 |
| abstract_inverted_index.to | 31, 47, 94, 116, 132, 153, 167, 210 |
| abstract_inverted_index.600 | 159 |
| abstract_inverted_index.The | 200 |
| abstract_inverted_index.and | 13, 23, 66, 87, 107, 146, 177, 192, 215 |
| abstract_inverted_index.are | 92, 114, 151, 165, 195 |
| abstract_inverted_index.for | 229 |
| abstract_inverted_index.map | 137, 145, 150 |
| abstract_inverted_index.the | 5, 18, 27, 33, 50, 54, 72, 78, 96, 101, 111, 120, 134, 142, 147, 155, 169, 181, 205, 211, 216, 231 |
| abstract_inverted_index.dark | 88 |
| abstract_inverted_index.each | 178, 220 |
| abstract_inverted_index.edge | 22 |
| abstract_inverted_index.lays | 226 |
| abstract_inverted_index.map. | 99, 158 |
| abstract_inverted_index.mean | 189 |
| abstract_inverted_index.show | 203 |
| abstract_inverted_index.that | 35, 204 |
| abstract_inverted_index.time | 194 |
| abstract_inverted_index.used | 76, 93, 115, 131, 166 |
| abstract_inverted_index.with | 172 |
| abstract_inverted_index.based | 40, 62, 125 |
| abstract_inverted_index.cause | 17 |
| abstract_inverted_index.color | 73, 82 |
| abstract_inverted_index.error | 191 |
| abstract_inverted_index.final | 156 |
| abstract_inverted_index.flame | 2, 21, 56, 112, 160, 237 |
| abstract_inverted_index.fused | 152 |
| abstract_inverted_index.halo, | 14 |
| abstract_inverted_index.image | 3, 43, 81, 113 |
| abstract_inverted_index.layer | 25 |
| abstract_inverted_index.order | 30 |
| abstract_inverted_index.other | 173, 212 |
| abstract_inverted_index.prior | 90 |
| abstract_inverted_index.smoke | 12 |
| abstract_inverted_index.solve | 32 |
| abstract_inverted_index.space | 83 |
| abstract_inverted_index.stage | 179, 221 |
| abstract_inverted_index.taken | 196 |
| abstract_inverted_index.which | 15, 225 |
| abstract_inverted_index.would | 16 |
| abstract_inverted_index.actual | 51 |
| abstract_inverted_index.curve, | 187 |
| abstract_inverted_index.image, | 57 |
| abstract_inverted_index.image. | 28, 239 |
| abstract_inverted_index.images | 161 |
| abstract_inverted_index.kernel | 122 |
| abstract_inverted_index.manual | 163 |
| abstract_inverted_index.method | 39, 61, 171, 183, 207 |
| abstract_inverted_index.obtain | 49, 95, 154 |
| abstract_inverted_index.region | 103, 118 |
| abstract_inverted_index.vector | 128 |
| abstract_inverted_index.channel | 89 |
| abstract_inverted_index.compare | 168 |
| abstract_inverted_index.initial | 97, 143 |
| abstract_inverted_index.methods | 176 |
| abstract_inverted_index.problem | 34 |
| abstract_inverted_index.process | 79 |
| abstract_inverted_index.results | 202 |
| abstract_inverted_index.running | 193 |
| abstract_inverted_index.scales. | 140 |
| abstract_inverted_index.section | 7, 238 |
| abstract_inverted_index.support | 127 |
| abstract_inverted_index.usually | 9 |
| abstract_inverted_index.Boosting | 68, 123 |
| abstract_inverted_index.Boundary | 85 |
| abstract_inverted_index.Finally, | 141 |
| abstract_inverted_index.Firstly, | 71 |
| abstract_inverted_index.absolute | 190 |
| abstract_inverted_index.blurring | 19 |
| abstract_inverted_index.boundary | 64 |
| abstract_inverted_index.contrast | 109 |
| abstract_inverted_index.existing | 175 |
| abstract_inverted_index.features | 44 |
| abstract_inverted_index.generate | 133 |
| abstract_inverted_index.indexes. | 199 |
| abstract_inverted_index.labeling | 164 |
| abstract_inverted_index.material | 24 |
| abstract_inverted_index.methods, | 214 |
| abstract_inverted_index.multiple | 121 |
| abstract_inverted_index.proposed | 170, 182, 206 |
| abstract_inverted_index.regional | 105, 108 |
| abstract_inverted_index.saliency | 37, 52, 59, 98, 136, 144, 149, 157 |
| abstract_inverted_index.superior | 209 |
| abstract_inverted_index.variance | 106 |
| abstract_inverted_index.Secondly, | 100 |
| abstract_inverted_index.algorithm | 124 |
| abstract_inverted_index.analyzed. | 185 |
| abstract_inverted_index.construct | 117 |
| abstract_inverted_index.detection | 38, 60, 217 |
| abstract_inverted_index.difficult | 46 |
| abstract_inverted_index.effective | 232 |
| abstract_inverted_index.enhanced, | 224 |
| abstract_inverted_index.gradually | 223 |
| abstract_inverted_index.improving | 230 |
| abstract_inverted_index.including | 162 |
| abstract_inverted_index.principle | 91 |
| abstract_inverted_index.proposed. | 70 |
| abstract_inverted_index.sintering | 6, 236 |
| abstract_inverted_index.evaluation | 198 |
| abstract_inverted_index.extraction | 234 |
| abstract_inverted_index.foundation | 228 |
| abstract_inverted_index.interfered | 10 |
| abstract_inverted_index.regression | 129 |
| abstract_inverted_index.conversion. | 84 |
| abstract_inverted_index.descriptor, | 119 |
| abstract_inverted_index.effectively | 48 |
| abstract_inverted_index.information | 233 |
| abstract_inverted_index.performance | 218 |
| abstract_inverted_index.super-pixel | 102 |
| abstract_inverted_index.traditional | 36 |
| abstract_inverted_index.connectivity | 65, 86 |
| abstract_inverted_index.experimental | 201 |
| abstract_inverted_index.information, | 104 |
| abstract_inverted_index.multi-kernel | 67 |
| abstract_inverted_index.complementary | 135, 148 |
| abstract_inverted_index.de-correlation | 74 |
| abstract_inverted_index.indent=0mm>The | 1 |
| abstract_inverted_index.cross-sectional | 55 |
| abstract_inverted_index.two-dimensional | 42 |
| abstract_inverted_index.<italic>F</italic>-measure, | 188 |
| abstract_inverted_index.<italic>P</italic>-<italic>R</italic> | 186 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.21621144 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |