Multiscale Neural Networks for Approximating Green's Functions Article Swipe
Wenrui Hao
,
Ruipeng Li
,
Yuanzhe Xi
,
Tianshi Xu
,
Yahong Yang
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.18439
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.18439
Neural networks (NNs) have been widely used to solve partial differential equations (PDEs) in the applications of physics, biology, and engineering. One effective approach for solving PDEs with a fixed differential operator is learning Green's functions. However, Green's functions are notoriously difficult to learn due to their poor regularity, which typically requires larger NNs and longer training times. In this paper, we address these challenges by leveraging multiscale NNs to learn Green's functions. Through theoretical analysis using multiscale Barron space methods and experimental validation, we show that the multiscale approach significantly reduces the necessary NN size and accelerates training.
Related Topics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.18439
- https://arxiv.org/pdf/2410.18439
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404313112
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404313112Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.18439Digital Object Identifier
- Title
-
Multiscale Neural Networks for Approximating Green's FunctionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-24Full publication date if available
- Authors
-
Wenrui Hao, Ruipeng Li, Yuanzhe Xi, Tianshi Xu, Yahong YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.18439Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.18439Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.18439Direct OA link when available
- Concepts
-
Artificial neural network, Mathematics, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404313112 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.18439 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.18439 |
| ids.openalex | https://openalex.org/W4404313112 |
| fwci | |
| type | preprint |
| title | Multiscale Neural Networks for Approximating Green's Functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9121999740600586 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5338180065155029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3916083872318268 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.37751513719558716 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.27822962403297424 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.5338180065155029 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.3916083872318268 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.37751513719558716 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.27822962403297424 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.18439 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.18439 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.18439 |
| locations[1].id | doi:10.48550/arxiv.2410.18439 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.18439 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032431412 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6925-7424 |
| authorships[0].author.display_name | Wenrui Hao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao, Wenrui |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101509235 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2802-5763 |
| authorships[1].author.display_name | Ruipeng Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Rui Peng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056635728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0361-0931 |
| authorships[2].author.display_name | Yuanzhe Xi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xi, Yuanzhe |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015784249 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3119-1957 |
| authorships[3].author.display_name | Tianshi Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Tianshi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100369309 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9721-2362 |
| authorships[4].author.display_name | Yahong Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Yahong |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.18439 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multiscale Neural Networks for Approximating Green's Functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9121999740600586 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.18439 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.18439 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.18439 |
| primary_location.id | pmh:oai:arXiv.org:2410.18439 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.18439 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.18439 |
| publication_date | 2024-10-24 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28 |
| abstract_inverted_index.In | 58 |
| abstract_inverted_index.NN | 94 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.is | 32 |
| abstract_inverted_index.of | 16 |
| abstract_inverted_index.to | 7, 42, 45, 69 |
| abstract_inverted_index.we | 61, 84 |
| abstract_inverted_index.NNs | 53, 68 |
| abstract_inverted_index.One | 21 |
| abstract_inverted_index.and | 19, 54, 81, 96 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.due | 44 |
| abstract_inverted_index.for | 24 |
| abstract_inverted_index.the | 14, 87, 92 |
| abstract_inverted_index.PDEs | 26 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.poor | 47 |
| abstract_inverted_index.show | 85 |
| abstract_inverted_index.size | 95 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.(NNs) | 2 |
| abstract_inverted_index.fixed | 29 |
| abstract_inverted_index.learn | 43, 70 |
| abstract_inverted_index.solve | 8 |
| abstract_inverted_index.space | 79 |
| abstract_inverted_index.their | 46 |
| abstract_inverted_index.these | 63 |
| abstract_inverted_index.using | 76 |
| abstract_inverted_index.which | 49 |
| abstract_inverted_index.(PDEs) | 12 |
| abstract_inverted_index.Barron | 78 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.larger | 52 |
| abstract_inverted_index.longer | 55 |
| abstract_inverted_index.paper, | 60 |
| abstract_inverted_index.times. | 57 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.Green's | 34, 37, 71 |
| abstract_inverted_index.Through | 73 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.methods | 80 |
| abstract_inverted_index.partial | 9 |
| abstract_inverted_index.reduces | 91 |
| abstract_inverted_index.solving | 25 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.analysis | 75 |
| abstract_inverted_index.approach | 23, 89 |
| abstract_inverted_index.biology, | 18 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.networks | 1 |
| abstract_inverted_index.operator | 31 |
| abstract_inverted_index.physics, | 17 |
| abstract_inverted_index.requires | 51 |
| abstract_inverted_index.training | 56 |
| abstract_inverted_index.difficult | 41 |
| abstract_inverted_index.effective | 22 |
| abstract_inverted_index.equations | 11 |
| abstract_inverted_index.functions | 38 |
| abstract_inverted_index.necessary | 93 |
| abstract_inverted_index.training. | 98 |
| abstract_inverted_index.typically | 50 |
| abstract_inverted_index.challenges | 64 |
| abstract_inverted_index.functions. | 35, 72 |
| abstract_inverted_index.leveraging | 66 |
| abstract_inverted_index.multiscale | 67, 77, 88 |
| abstract_inverted_index.accelerates | 97 |
| abstract_inverted_index.notoriously | 40 |
| abstract_inverted_index.regularity, | 48 |
| abstract_inverted_index.theoretical | 74 |
| abstract_inverted_index.validation, | 83 |
| abstract_inverted_index.applications | 15 |
| abstract_inverted_index.differential | 10, 30 |
| abstract_inverted_index.engineering. | 20 |
| abstract_inverted_index.experimental | 82 |
| abstract_inverted_index.significantly | 90 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |