Multisensor Online Transfer Learning for 3D LiDAR-based Human Classification with a Mobile Robot Article Swipe
Human detection and tracking is an essential task for service robots, where the combined use of multiple sensors has potential advantages that are yet to be exploited. In this paper, we introduce a framework allowing a robot to learn a new 3D LiDAR-based human classifier from other sensors over time, taking advantage of a multisensor tracking system. The main innovation is the use of different detectors for existing sensors (i.e. RGB-D camera, 2D LiDAR) to train, online, a new 3D LiDAR-based human classifier, exploiting a so-called trajectory probability. Our framework uses this probability to check whether new detections belongs to a human trajectory, estimated by different sensors and/or detectors, and to learn a human classifier in a semi-supervised fashion. The framework has been implemented and tested on a real-world dataset collected by a mobile robot. We present experiments illustrating that our system is able to effectively learn from different sensors and from the environment, and that the performance of the 3D LiDAR-based human classification improves with the number of sensors/detectors used.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://export.arxiv.org/pdf/1801.04137
- OA Status
- green
- Cited By
- 6
- References
- 24
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2783530831
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2783530831Canonical identifier for this work in OpenAlex
- Title
-
Multisensor Online Transfer Learning for 3D LiDAR-based Human Classification with a Mobile RobotWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-12Full publication date if available
- Authors
-
Zhi Yan, Li Sun, Tom Duckett, Nicola BellottoList of authors in order
- Landing page
-
https://export.arxiv.org/pdf/1801.04137Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://export.arxiv.org/pdf/1801.04137Direct OA link when available
- Concepts
-
Lidar, Computer science, Artificial intelligence, Robot, Computer vision, Detector, Classifier (UML), Mobile robot, Remote sensing, Geography, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2020: 1, 2019: 3Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2783530831 |
|---|---|
| doi | |
| ids.mag | 2783530831 |
| ids.openalex | https://openalex.org/W2783530831 |
| fwci | |
| type | preprint |
| title | Multisensor Online Transfer Learning for 3D LiDAR-based Human Classification with a Mobile Robot |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8629050254821777 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7547056674957275 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7272929549217224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C90509273 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6124622225761414 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[3].display_name | Robot |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5659635066986084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C94915269 |
| concepts[5].level | 2 |
| concepts[5].score | 0.555503249168396 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[5].display_name | Detector |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5523152351379395 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C19966478 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5412532687187195 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[7].display_name | Mobile robot |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16030380129814148 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10129314661026001 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.8629050254821777 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7547056674957275 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7272929549217224 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/robot |
| keywords[3].score | 0.6124622225761414 |
| keywords[3].display_name | Robot |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5659635066986084 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/detector |
| keywords[5].score | 0.555503249168396 |
| keywords[5].display_name | Detector |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.5523152351379395 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/mobile-robot |
| keywords[7].score | 0.5412532687187195 |
| keywords[7].display_name | Mobile robot |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.16030380129814148 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.10129314661026001 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | mag:2783530831 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | http://export.arxiv.org/pdf/1801.04137 |
| authorships[0].author.id | https://openalex.org/A5008360393 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8251-9786 |
| authorships[0].author.display_name | Zhi Yan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhi Yan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101629398 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0393-8665 |
| authorships[1].author.display_name | Li Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li Sun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088202291 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2971-7905 |
| authorships[2].author.display_name | Tom Duckett |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tom Duckett |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023298828 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7950-9608 |
| authorships[3].author.display_name | Nicola Bellotto |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Nicola Bellotto |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://export.arxiv.org/pdf/1801.04137 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multisensor Online Transfer Learning for 3D LiDAR-based Human Classification with a Mobile Robot |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2962754704, https://openalex.org/W2763553648, https://openalex.org/W2506852507, https://openalex.org/W2800337392, https://openalex.org/W3113996510, https://openalex.org/W2964160397, https://openalex.org/W2739127893, https://openalex.org/W1033316025, https://openalex.org/W3013901231, https://openalex.org/W3186102478, https://openalex.org/W2952849383, https://openalex.org/W3141195458, https://openalex.org/W3170620799, https://openalex.org/W155997179, https://openalex.org/W2904483643, https://openalex.org/W3208098880, https://openalex.org/W2969759134, https://openalex.org/W2979810270, https://openalex.org/W3189814876, https://openalex.org/W3193418597 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | mag:2783530831 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | http://export.arxiv.org/pdf/1801.04137 |
| primary_location.id | mag:2783530831 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | http://export.arxiv.org/pdf/1801.04137 |
| publication_date | 2018-01-12 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2090183260, https://openalex.org/W1966456026, https://openalex.org/W2136475381, https://openalex.org/W1966408213, https://openalex.org/W2119821739, https://openalex.org/W1611476298, https://openalex.org/W2131072478, https://openalex.org/W2099570340, https://openalex.org/W2411443472, https://openalex.org/W1519128923, https://openalex.org/W2067528992, https://openalex.org/W2901136733, https://openalex.org/W34738725, https://openalex.org/W2037399936, https://openalex.org/W2113739894, https://openalex.org/W2111957821, https://openalex.org/W2153635508, https://openalex.org/W2129078811, https://openalex.org/W2031489346, https://openalex.org/W2964128312, https://openalex.org/W2964160397, https://openalex.org/W2118286367, https://openalex.org/W861352110, https://openalex.org/W1990334093 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 32, 35, 39, 53, 77, 84, 100, 112, 116, 127, 132 |
| abstract_inverted_index.2D | 72 |
| abstract_inverted_index.3D | 41, 79, 160 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.We | 135 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.by | 104, 131 |
| abstract_inverted_index.in | 115 |
| abstract_inverted_index.is | 4, 60, 142 |
| abstract_inverted_index.of | 15, 52, 63, 158, 168 |
| abstract_inverted_index.on | 126 |
| abstract_inverted_index.to | 24, 37, 74, 93, 99, 110, 144 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.Our | 88 |
| abstract_inverted_index.The | 57, 119 |
| abstract_inverted_index.and | 2, 109, 124, 150, 154 |
| abstract_inverted_index.are | 22 |
| abstract_inverted_index.for | 8, 66 |
| abstract_inverted_index.has | 18, 121 |
| abstract_inverted_index.new | 40, 78, 96 |
| abstract_inverted_index.our | 140 |
| abstract_inverted_index.the | 12, 61, 152, 156, 159, 166 |
| abstract_inverted_index.use | 14, 62 |
| abstract_inverted_index.yet | 23 |
| abstract_inverted_index.able | 143 |
| abstract_inverted_index.been | 122 |
| abstract_inverted_index.from | 45, 147, 151 |
| abstract_inverted_index.main | 58 |
| abstract_inverted_index.over | 48 |
| abstract_inverted_index.task | 7 |
| abstract_inverted_index.that | 21, 139, 155 |
| abstract_inverted_index.this | 28, 91 |
| abstract_inverted_index.uses | 90 |
| abstract_inverted_index.with | 165 |
| abstract_inverted_index.(i.e. | 69 |
| abstract_inverted_index.Human | 0 |
| abstract_inverted_index.RGB-D | 70 |
| abstract_inverted_index.check | 94 |
| abstract_inverted_index.human | 43, 81, 101, 113, 162 |
| abstract_inverted_index.learn | 38, 111, 146 |
| abstract_inverted_index.other | 46 |
| abstract_inverted_index.robot | 36 |
| abstract_inverted_index.time, | 49 |
| abstract_inverted_index.used. | 170 |
| abstract_inverted_index.where | 11 |
| abstract_inverted_index.LiDAR) | 73 |
| abstract_inverted_index.and/or | 107 |
| abstract_inverted_index.mobile | 133 |
| abstract_inverted_index.number | 167 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.robot. | 134 |
| abstract_inverted_index.system | 141 |
| abstract_inverted_index.taking | 50 |
| abstract_inverted_index.tested | 125 |
| abstract_inverted_index.train, | 75 |
| abstract_inverted_index.belongs | 98 |
| abstract_inverted_index.camera, | 71 |
| abstract_inverted_index.dataset | 129 |
| abstract_inverted_index.online, | 76 |
| abstract_inverted_index.present | 136 |
| abstract_inverted_index.robots, | 10 |
| abstract_inverted_index.sensors | 17, 47, 68, 106, 149 |
| abstract_inverted_index.service | 9 |
| abstract_inverted_index.system. | 56 |
| abstract_inverted_index.whether | 95 |
| abstract_inverted_index.allowing | 34 |
| abstract_inverted_index.combined | 13 |
| abstract_inverted_index.existing | 67 |
| abstract_inverted_index.fashion. | 118 |
| abstract_inverted_index.improves | 164 |
| abstract_inverted_index.multiple | 16 |
| abstract_inverted_index.tracking | 3, 55 |
| abstract_inverted_index.advantage | 51 |
| abstract_inverted_index.collected | 130 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.detectors | 65 |
| abstract_inverted_index.different | 64, 105, 148 |
| abstract_inverted_index.essential | 6 |
| abstract_inverted_index.estimated | 103 |
| abstract_inverted_index.framework | 33, 89, 120 |
| abstract_inverted_index.introduce | 31 |
| abstract_inverted_index.potential | 19 |
| abstract_inverted_index.so-called | 85 |
| abstract_inverted_index.advantages | 20 |
| abstract_inverted_index.classifier | 44, 114 |
| abstract_inverted_index.detections | 97 |
| abstract_inverted_index.detectors, | 108 |
| abstract_inverted_index.exploited. | 26 |
| abstract_inverted_index.exploiting | 83 |
| abstract_inverted_index.innovation | 59 |
| abstract_inverted_index.real-world | 128 |
| abstract_inverted_index.trajectory | 86 |
| abstract_inverted_index.LiDAR-based | 42, 80, 161 |
| abstract_inverted_index.classifier, | 82 |
| abstract_inverted_index.effectively | 145 |
| abstract_inverted_index.experiments | 137 |
| abstract_inverted_index.implemented | 123 |
| abstract_inverted_index.multisensor | 54 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.probability | 92 |
| abstract_inverted_index.trajectory, | 102 |
| abstract_inverted_index.environment, | 153 |
| abstract_inverted_index.illustrating | 138 |
| abstract_inverted_index.probability. | 87 |
| abstract_inverted_index.classification | 163 |
| abstract_inverted_index.semi-supervised | 117 |
| abstract_inverted_index.sensors/detectors | 169 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |