Multiview Transformer: Rethinking Spatial Information in Hyperspectral Image Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.07186
Identifying the land cover category for each pixel in a hyperspectral image (HSI) relies on spectral and spatial information. An HSI cuboid with a specific patch size is utilized to extract spatial-spectral feature representation for the central pixel. In this article, we investigate that scene-specific but not essential correlations may be recorded in an HSI cuboid. This additional information improves the model performance on existing HSI datasets and makes it hard to properly evaluate the ability of a model. We refer to this problem as the spatial overfitting issue and utilize strict experimental settings to avoid it. We further propose a multiview transformer for HSI classification, which consists of multiview principal component analysis (MPCA), spectral encoder-decoder (SED), and spatial-pooling tokenization transformer (SPTT). MPCA performs dimension reduction on an HSI via constructing spectral multiview observations and applying PCA on each view data to extract low-dimensional view representation. The combination of view representations, named multiview representation, is the dimension reduction output of the MPCA. To aggregate the multiview information, a fully-convolutional SED with a U-shape in spectral dimension is introduced to extract a multiview feature map. SPTT transforms the multiview features into tokens using the spatial-pooling tokenization strategy and learns robust and discriminative spatial-spectral features for land cover identification. Classification is conducted with a linear classifier. Experiments on three HSI datasets with rigid settings demonstrate the superiority of the proposed multiview transformer over the state-of-the-art methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.07186
- https://arxiv.org/pdf/2310.07186
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387623393
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387623393Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.07186Digital Object Identifier
- Title
-
Multiview Transformer: Rethinking Spatial Information in Hyperspectral Image ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-11Full publication date if available
- Authors
-
Jie Zhang, Yongshan Zhang, Yicong ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.07186Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.07186Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.07186Direct OA link when available
- Concepts
-
Artificial intelligence, Hyperspectral imaging, Computer science, Pattern recognition (psychology), Dimensionality reduction, Spatial analysis, Pixel, Feature extraction, Computer vision, Discriminative model, Remote sensing, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387623393 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.07186 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.07186 |
| ids.openalex | https://openalex.org/W4387623393 |
| fwci | |
| type | preprint |
| title | Multiview Transformer: Rethinking Spatial Information in Hyperspectral Image Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9125999808311462 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7648392915725708 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C159078339 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7326548099517822 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[1].display_name | Hyperspectral imaging |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6848424673080444 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6829496622085571 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C70518039 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5318911671638489 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[4].display_name | Dimensionality reduction |
| concepts[5].id | https://openalex.org/C159620131 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5281792879104614 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[5].display_name | Spatial analysis |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4681808054447174 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4505848288536072 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44758525490760803 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C97931131 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43488991260528564 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[9].display_name | Discriminative model |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2022678554058075 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08166065812110901 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7648392915725708 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[1].score | 0.7326548099517822 |
| keywords[1].display_name | Hyperspectral imaging |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6848424673080444 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6829496622085571 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[4].score | 0.5318911671638489 |
| keywords[4].display_name | Dimensionality reduction |
| keywords[5].id | https://openalex.org/keywords/spatial-analysis |
| keywords[5].score | 0.5281792879104614 |
| keywords[5].display_name | Spatial analysis |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.4681808054447174 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.4505848288536072 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.44758525490760803 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/discriminative-model |
| keywords[9].score | 0.43488991260528564 |
| keywords[9].display_name | Discriminative model |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.2022678554058075 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.08166065812110901 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.07186 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.07186 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.07186 |
| locations[1].id | doi:10.48550/arxiv.2310.07186 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.07186 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100436731 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3354-0690 |
| authorships[0].author.display_name | Jie Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Jie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038549098 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5817-1732 |
| authorships[1].author.display_name | Yongshan Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Yongshan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009595085 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4487-6384 |
| authorships[2].author.display_name | Yicong Zhou |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhou, Yicong |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.07186 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-14T00:00:00 |
| display_name | Multiview Transformer: Rethinking Spatial Information in Hyperspectral Image Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2070598848, https://openalex.org/W2044184146, https://openalex.org/W2292979300, https://openalex.org/W2137369096, https://openalex.org/W2120164251 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.07186 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.07186 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.07186 |
| primary_location.id | pmh:oai:arXiv.org:2310.07186 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.07186 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.07186 |
| publication_date | 2023-10-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 23, 77, 100, 167, 171, 180, 211 |
| abstract_inverted_index.An | 19 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.To | 162 |
| abstract_inverted_index.We | 79, 97 |
| abstract_inverted_index.an | 53, 127 |
| abstract_inverted_index.as | 84 |
| abstract_inverted_index.be | 50 |
| abstract_inverted_index.in | 8, 52, 173 |
| abstract_inverted_index.is | 27, 154, 176, 208 |
| abstract_inverted_index.it | 69 |
| abstract_inverted_index.of | 76, 108, 148, 159, 225 |
| abstract_inverted_index.on | 14, 63, 126, 137, 215 |
| abstract_inverted_index.to | 29, 71, 81, 94, 141, 178 |
| abstract_inverted_index.we | 41 |
| abstract_inverted_index.HSI | 20, 54, 65, 104, 128, 217 |
| abstract_inverted_index.PCA | 136 |
| abstract_inverted_index.SED | 169 |
| abstract_inverted_index.The | 146 |
| abstract_inverted_index.and | 16, 67, 89, 117, 134, 196, 199 |
| abstract_inverted_index.but | 45 |
| abstract_inverted_index.for | 5, 34, 103, 203 |
| abstract_inverted_index.it. | 96 |
| abstract_inverted_index.may | 49 |
| abstract_inverted_index.not | 46 |
| abstract_inverted_index.the | 1, 35, 60, 74, 85, 155, 160, 164, 186, 192, 223, 226, 231 |
| abstract_inverted_index.via | 129 |
| abstract_inverted_index.MPCA | 122 |
| abstract_inverted_index.SPTT | 184 |
| abstract_inverted_index.This | 56 |
| abstract_inverted_index.data | 140 |
| abstract_inverted_index.each | 6, 138 |
| abstract_inverted_index.hard | 70 |
| abstract_inverted_index.into | 189 |
| abstract_inverted_index.land | 2, 204 |
| abstract_inverted_index.map. | 183 |
| abstract_inverted_index.over | 230 |
| abstract_inverted_index.size | 26 |
| abstract_inverted_index.that | 43 |
| abstract_inverted_index.this | 39, 82 |
| abstract_inverted_index.view | 139, 144, 149 |
| abstract_inverted_index.with | 22, 170, 210, 219 |
| abstract_inverted_index.(HSI) | 12 |
| abstract_inverted_index.MPCA. | 161 |
| abstract_inverted_index.avoid | 95 |
| abstract_inverted_index.cover | 3, 205 |
| abstract_inverted_index.image | 11 |
| abstract_inverted_index.issue | 88 |
| abstract_inverted_index.makes | 68 |
| abstract_inverted_index.model | 61 |
| abstract_inverted_index.named | 151 |
| abstract_inverted_index.patch | 25 |
| abstract_inverted_index.pixel | 7 |
| abstract_inverted_index.refer | 80 |
| abstract_inverted_index.rigid | 220 |
| abstract_inverted_index.three | 216 |
| abstract_inverted_index.using | 191 |
| abstract_inverted_index.which | 106 |
| abstract_inverted_index.(SED), | 116 |
| abstract_inverted_index.cuboid | 21 |
| abstract_inverted_index.learns | 197 |
| abstract_inverted_index.linear | 212 |
| abstract_inverted_index.model. | 78 |
| abstract_inverted_index.output | 158 |
| abstract_inverted_index.pixel. | 37 |
| abstract_inverted_index.relies | 13 |
| abstract_inverted_index.robust | 198 |
| abstract_inverted_index.strict | 91 |
| abstract_inverted_index.tokens | 190 |
| abstract_inverted_index.(MPCA), | 113 |
| abstract_inverted_index.(SPTT). | 121 |
| abstract_inverted_index.U-shape | 172 |
| abstract_inverted_index.ability | 75 |
| abstract_inverted_index.central | 36 |
| abstract_inverted_index.cuboid. | 55 |
| abstract_inverted_index.extract | 30, 142, 179 |
| abstract_inverted_index.feature | 32, 182 |
| abstract_inverted_index.further | 98 |
| abstract_inverted_index.problem | 83 |
| abstract_inverted_index.propose | 99 |
| abstract_inverted_index.spatial | 17, 86 |
| abstract_inverted_index.utilize | 90 |
| abstract_inverted_index.analysis | 112 |
| abstract_inverted_index.applying | 135 |
| abstract_inverted_index.article, | 40 |
| abstract_inverted_index.category | 4 |
| abstract_inverted_index.consists | 107 |
| abstract_inverted_index.datasets | 66, 218 |
| abstract_inverted_index.evaluate | 73 |
| abstract_inverted_index.existing | 64 |
| abstract_inverted_index.features | 188, 202 |
| abstract_inverted_index.improves | 59 |
| abstract_inverted_index.methods. | 233 |
| abstract_inverted_index.performs | 123 |
| abstract_inverted_index.properly | 72 |
| abstract_inverted_index.proposed | 227 |
| abstract_inverted_index.recorded | 51 |
| abstract_inverted_index.settings | 93, 221 |
| abstract_inverted_index.specific | 24 |
| abstract_inverted_index.spectral | 15, 114, 131, 174 |
| abstract_inverted_index.strategy | 195 |
| abstract_inverted_index.utilized | 28 |
| abstract_inverted_index.aggregate | 163 |
| abstract_inverted_index.component | 111 |
| abstract_inverted_index.conducted | 209 |
| abstract_inverted_index.dimension | 124, 156, 175 |
| abstract_inverted_index.essential | 47 |
| abstract_inverted_index.multiview | 101, 109, 132, 152, 165, 181, 187, 228 |
| abstract_inverted_index.principal | 110 |
| abstract_inverted_index.reduction | 125, 157 |
| abstract_inverted_index.additional | 57 |
| abstract_inverted_index.introduced | 177 |
| abstract_inverted_index.transforms | 185 |
| abstract_inverted_index.Experiments | 214 |
| abstract_inverted_index.Identifying | 0 |
| abstract_inverted_index.classifier. | 213 |
| abstract_inverted_index.combination | 147 |
| abstract_inverted_index.demonstrate | 222 |
| abstract_inverted_index.information | 58 |
| abstract_inverted_index.investigate | 42 |
| abstract_inverted_index.overfitting | 87 |
| abstract_inverted_index.performance | 62 |
| abstract_inverted_index.superiority | 224 |
| abstract_inverted_index.transformer | 102, 120, 229 |
| abstract_inverted_index.constructing | 130 |
| abstract_inverted_index.correlations | 48 |
| abstract_inverted_index.experimental | 92 |
| abstract_inverted_index.information, | 166 |
| abstract_inverted_index.information. | 18 |
| abstract_inverted_index.observations | 133 |
| abstract_inverted_index.tokenization | 119, 194 |
| abstract_inverted_index.hyperspectral | 10 |
| abstract_inverted_index.Classification | 207 |
| abstract_inverted_index.discriminative | 200 |
| abstract_inverted_index.representation | 33 |
| abstract_inverted_index.scene-specific | 44 |
| abstract_inverted_index.classification, | 105 |
| abstract_inverted_index.encoder-decoder | 115 |
| abstract_inverted_index.identification. | 206 |
| abstract_inverted_index.low-dimensional | 143 |
| abstract_inverted_index.representation, | 153 |
| abstract_inverted_index.representation. | 145 |
| abstract_inverted_index.spatial-pooling | 118, 193 |
| abstract_inverted_index.representations, | 150 |
| abstract_inverted_index.spatial-spectral | 31, 201 |
| abstract_inverted_index.state-of-the-art | 232 |
| abstract_inverted_index.fully-convolutional | 168 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |