Muon Trigger using Deep Neural Networks accelerated by FPGAs Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.22323/1.390.0712
Accuracy and latency are crucial to the trigger system in high luminosity particle physics experiments. We investigate the usage of deep neural networks (DNN) to improve the accuracy of the muon track segment reconstruction process at the trigger level. Track segments, made by hits within a detector module, are the initial partial reconstructed objects which are the typical building blocks for muon triggers. Currently, these segments are coarsely reconstructed on FPGAs to keep the latency manageable. DNNs are ideal for these types of pattern recognition problems, and so we examine the potential for DNN based track segment reconstruction to be accelerated by dedicated FPGAs to improve both processing speed and latency for the trigger system.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.22323/1.390.0712
- https://pos.sissa.it/390/712/pdf
- OA Status
- hybrid
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3135969215
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3135969215Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22323/1.390.0712Digital Object Identifier
- Title
-
Muon Trigger using Deep Neural Networks accelerated by FPGAsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-31Full publication date if available
- Authors
-
Y. Son, Seulgi Kim, J. S. H. Lee, Inkyu Park, I. J. Watson, S. YangList of authors in order
- Landing page
-
https://doi.org/10.22323/1.390.0712Publisher landing page
- PDF URL
-
https://pos.sissa.it/390/712/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://pos.sissa.it/390/712/pdfDirect OA link when available
- Concepts
-
Field-programmable gate array, Latency (audio), Computer science, Track (disk drive), Deep neural networks, Artificial neural network, Process (computing), Artificial intelligence, Muon, Computer hardware, Real-time computing, Physics, Particle physics, Telecommunications, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3135969215 |
|---|---|
| doi | https://doi.org/10.22323/1.390.0712 |
| ids.doi | https://doi.org/10.22323/1.390.0712 |
| ids.mag | 3135969215 |
| ids.openalex | https://openalex.org/W3135969215 |
| fwci | 0.0 |
| type | article |
| title | Muon Trigger using Deep Neural Networks accelerated by FPGAs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 712 |
| biblio.first_page | 712 |
| topics[0].id | https://openalex.org/T11044 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Particle Detector Development and Performance |
| topics[1].id | https://openalex.org/T10048 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Particle physics theoretical and experimental studies |
| topics[2].id | https://openalex.org/T11216 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Radiation Detection and Scintillator Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C42935608 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8205008506774902 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[0].display_name | Field-programmable gate array |
| concepts[1].id | https://openalex.org/C82876162 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8006497025489807 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[1].display_name | Latency (audio) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6736279129981995 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C89992363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6417536735534668 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[3].display_name | Track (disk drive) |
| concepts[4].id | https://openalex.org/C2984842247 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5397968292236328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep neural networks |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5244187116622925 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4794955849647522 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.444717139005661 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C205334942 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4407609701156616 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3151 |
| concepts[8].display_name | Muon |
| concepts[9].id | https://openalex.org/C9390403 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3712419271469116 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[9].display_name | Computer hardware |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3450360894203186 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20562905073165894 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C109214941 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11033636331558228 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[12].display_name | Particle physics |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09405127167701721 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/field-programmable-gate-array |
| keywords[0].score | 0.8205008506774902 |
| keywords[0].display_name | Field-programmable gate array |
| keywords[1].id | https://openalex.org/keywords/latency |
| keywords[1].score | 0.8006497025489807 |
| keywords[1].display_name | Latency (audio) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6736279129981995 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/track |
| keywords[3].score | 0.6417536735534668 |
| keywords[3].display_name | Track (disk drive) |
| keywords[4].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[4].score | 0.5397968292236328 |
| keywords[4].display_name | Deep neural networks |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5244187116622925 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.4794955849647522 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.444717139005661 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/muon |
| keywords[8].score | 0.4407609701156616 |
| keywords[8].display_name | Muon |
| keywords[9].id | https://openalex.org/keywords/computer-hardware |
| keywords[9].score | 0.3712419271469116 |
| keywords[9].display_name | Computer hardware |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.3450360894203186 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.20562905073165894 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/particle-physics |
| keywords[12].score | 0.11033636331558228 |
| keywords[12].display_name | Particle physics |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.09405127167701721 |
| keywords[13].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.22323/1.390.0712 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306523389 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://pos.sissa.it/390/712/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020) |
| locations[0].landing_page_url | https://doi.org/10.22323/1.390.0712 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5033893153 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7214-8480 |
| authorships[0].author.display_name | Y. Son |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I124633538 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I124633538 |
| authorships[0].institutions[0].ror | https://ror.org/05en5nh73 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124633538 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | University of Seoul |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Youngwan Son |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5100612922 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8015-7379 |
| authorships[1].author.display_name | Seulgi Kim |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I124633538 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I124633538 |
| authorships[1].institutions[0].ror | https://ror.org/05en5nh73 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124633538 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | University of Seoul |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seulgi Kim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5043109251 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2153-1519 |
| authorships[2].author.display_name | J. S. H. Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I124633538 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I124633538 |
| authorships[2].institutions[0].ror | https://ror.org/05en5nh73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124633538 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | University of Seoul |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jason LEE |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5053984358 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4510-6776 |
| authorships[3].author.display_name | Inkyu Park |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I124633538 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I124633538 |
| authorships[3].institutions[0].ror | https://ror.org/05en5nh73 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124633538 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | University of Seoul |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Inkyu Park |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5106485564 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2141-3413 |
| authorships[4].author.display_name | I. J. Watson |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I124633538 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I124633538 |
| authorships[4].institutions[0].ror | https://ror.org/05en5nh73 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124633538 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | University of Seoul |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ian James Watson |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5055093558 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6905-6553 |
| authorships[5].author.display_name | S. Yang |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I124633538 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| authorships[5].institutions[0].id | https://openalex.org/I124633538 |
| authorships[5].institutions[0].ror | https://ror.org/05en5nh73 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124633538 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | University of Seoul |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Seungjin Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physics, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pos.sissa.it/390/712/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Muon Trigger using Deep Neural Networks accelerated by FPGAs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11044 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Particle Detector Development and Performance |
| related_works | https://openalex.org/W4212849403, https://openalex.org/W2780330487, https://openalex.org/W3103899367, https://openalex.org/W2079325585, https://openalex.org/W2180550265, https://openalex.org/W199897226, https://openalex.org/W3087025136, https://openalex.org/W2595249595, https://openalex.org/W1602169436, https://openalex.org/W2070771551 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22323/1.390.0712 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306523389 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://pos.sissa.it/390/712/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020) |
| best_oa_location.landing_page_url | https://doi.org/10.22323/1.390.0712 |
| primary_location.id | doi:10.22323/1.390.0712 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306523389 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://pos.sissa.it/390/712/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020) |
| primary_location.landing_page_url | https://doi.org/10.22323/1.390.0712 |
| publication_date | 2021-01-31 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2033815440, https://openalex.org/W1990869665, https://openalex.org/W3088573188, https://openalex.org/W4308909683, https://openalex.org/W2765877886, https://openalex.org/W2531409750, https://openalex.org/W3088476872 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 45 |
| abstract_inverted_index.We | 15 |
| abstract_inverted_index.at | 35 |
| abstract_inverted_index.be | 99 |
| abstract_inverted_index.by | 42, 101 |
| abstract_inverted_index.in | 9 |
| abstract_inverted_index.of | 19, 28, 82 |
| abstract_inverted_index.on | 69 |
| abstract_inverted_index.so | 87 |
| abstract_inverted_index.to | 5, 24, 71, 98, 104 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.DNN | 93 |
| abstract_inverted_index.and | 1, 86, 109 |
| abstract_inverted_index.are | 3, 48, 55, 66, 77 |
| abstract_inverted_index.for | 60, 79, 92, 111 |
| abstract_inverted_index.the | 6, 17, 26, 29, 36, 49, 56, 73, 90, 112 |
| abstract_inverted_index.DNNs | 76 |
| abstract_inverted_index.both | 106 |
| abstract_inverted_index.deep | 20 |
| abstract_inverted_index.high | 10 |
| abstract_inverted_index.hits | 43 |
| abstract_inverted_index.keep | 72 |
| abstract_inverted_index.made | 41 |
| abstract_inverted_index.muon | 30, 61 |
| abstract_inverted_index.(DNN) | 23 |
| abstract_inverted_index.FPGAs | 70, 103 |
| abstract_inverted_index.Track | 39 |
| abstract_inverted_index.based | 94 |
| abstract_inverted_index.ideal | 78 |
| abstract_inverted_index.speed | 108 |
| abstract_inverted_index.these | 64, 80 |
| abstract_inverted_index.track | 31, 95 |
| abstract_inverted_index.types | 81 |
| abstract_inverted_index.usage | 18 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.blocks | 59 |
| abstract_inverted_index.level. | 38 |
| abstract_inverted_index.neural | 21 |
| abstract_inverted_index.system | 8 |
| abstract_inverted_index.within | 44 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.examine | 89 |
| abstract_inverted_index.improve | 25, 105 |
| abstract_inverted_index.initial | 50 |
| abstract_inverted_index.latency | 2, 74, 110 |
| abstract_inverted_index.module, | 47 |
| abstract_inverted_index.objects | 53 |
| abstract_inverted_index.partial | 51 |
| abstract_inverted_index.pattern | 83 |
| abstract_inverted_index.physics | 13 |
| abstract_inverted_index.process | 34 |
| abstract_inverted_index.segment | 32, 96 |
| abstract_inverted_index.system. | 114 |
| abstract_inverted_index.trigger | 7, 37, 113 |
| abstract_inverted_index.typical | 57 |
| abstract_inverted_index.Accuracy | 0 |
| abstract_inverted_index.accuracy | 27 |
| abstract_inverted_index.building | 58 |
| abstract_inverted_index.coarsely | 67 |
| abstract_inverted_index.detector | 46 |
| abstract_inverted_index.networks | 22 |
| abstract_inverted_index.particle | 12 |
| abstract_inverted_index.segments | 65 |
| abstract_inverted_index.dedicated | 102 |
| abstract_inverted_index.potential | 91 |
| abstract_inverted_index.problems, | 85 |
| abstract_inverted_index.segments, | 40 |
| abstract_inverted_index.triggers. | 62 |
| abstract_inverted_index.Currently, | 63 |
| abstract_inverted_index.luminosity | 11 |
| abstract_inverted_index.processing | 107 |
| abstract_inverted_index.accelerated | 100 |
| abstract_inverted_index.investigate | 16 |
| abstract_inverted_index.manageable. | 75 |
| abstract_inverted_index.recognition | 84 |
| abstract_inverted_index.experiments. | 14 |
| abstract_inverted_index.reconstructed | 52, 68 |
| abstract_inverted_index.reconstruction | 33, 97 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5043109251 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I124633538 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.03933434 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |