Muscle volume quantification: guiding transformers with anatomical priors Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.20355
Muscle volume is a useful quantitative biomarker in sports, but also for the follow-up of degenerative musculo-skelletal diseases. In addition to volume, other shape biomarkers can be extracted by segmenting the muscles of interest from medical images. Manual segmentation is still today the gold standard for such measurements despite being very time-consuming. We propose a method for automatic segmentation of 18 muscles of the lower limb on 3D Magnetic Resonance Images to assist such morphometric analysis. By their nature, the tissue of different muscles is undistinguishable when observed in MR Images. Thus, muscle segmentation algorithms cannot rely on appearance but only on contour cues. However, such contours are hard to detect and their thickness varies across subjects. To cope with the above challenges, we propose a segmentation approach based on a hybrid architecture, combining convolutional and visual transformer blocks. We investigate for the first time the behaviour of such hybrid architectures in the context of muscle segmentation for shape analysis. Considering the consistent anatomical muscle configuration, we rely on transformer blocks to capture the longrange relations between the muscles. To further exploit the anatomical priors, a second contribution of this work consists in adding a regularisation loss based on an adjacency matrix of plausible muscle neighbourhoods estimated from the training data. Our experimental results on a unique database of elite athletes show it is possible to train complex hybrid models from a relatively small database of large volumes, while the anatomical prior regularisation favours better predictions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.48550/arxiv.2310.20355
- OA Status
- green
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388184731
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388184731Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.20355Digital Object Identifier
- Title
-
Muscle volume quantification: guiding transformers with anatomical priorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-31Full publication date if available
- Authors
-
Louise Piecuch, Vanessa Gonzalez Duque, Aurélie Sarcher, Enzo Hollville, Antoine Nordez, Giuseppe Rabita, Gaël Guilhem, Diana MateusList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2310.20355Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2310.20355Direct OA link when available
- Concepts
-
Segmentation, Computer science, Artificial intelligence, Pattern recognition (psychology), Image segmentation, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388184731 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.20355 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.20355 |
| ids.openalex | https://openalex.org/W4388184731 |
| fwci | |
| type | preprint |
| title | Muscle volume quantification: guiding transformers with anatomical priors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.970300018787384 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T12279 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9412000179290771 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2737 |
| topics[1].subfield.display_name | Physiology |
| topics[1].display_name | Body Composition Measurement Techniques |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9193000197410583 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7943698167800903 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.718523383140564 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.649700403213501 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5281738638877869 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C124504099 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4322478175163269 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[4].display_name | Image segmentation |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4136210083961487 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7943698167800903 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.718523383140564 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.649700403213501 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5281738638877869 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/image-segmentation |
| keywords[4].score | 0.4322478175163269 |
| keywords[4].display_name | Image segmentation |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.4136210083961487 |
| keywords[5].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.48550/arxiv.2310.20355 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2310.20355 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5106501750 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Louise Piecuch |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210117005, https://openalex.org/I97188460 |
| authorships[0].affiliations[0].raw_affiliation_string | LS2N - Laboratoire des Sciences du Numérique de Nantes (Nantes Université – faculté des Sciences et Techniques (FST) 2 Chemin de la Houssinière BP 92208, 44322 Nantes Cedex 3 - France) |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210117005 |
| authorships[0].affiliations[1].raw_affiliation_string | LS2N - équipe SIMS - Signal, IMage et Son (France) |
| authorships[0].institutions[0].id | https://openalex.org/I4210117005 |
| authorships[0].institutions[0].ror | https://ror.org/02snf8m58 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I100445878, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I205703379, https://openalex.org/I4210117005, https://openalex.org/I4210124215, https://openalex.org/I4210127572, https://openalex.org/I4210139971, https://openalex.org/I4210145102, https://openalex.org/I97188460, https://openalex.org/I97188460 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Laboratoire des Sciences du Numérique de Nantes |
| authorships[0].institutions[1].id | https://openalex.org/I97188460 |
| authorships[0].institutions[1].ror | https://ror.org/03gnr7b55 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I97188460 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Nantes Université |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Louise Piecuch |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | LS2N - Laboratoire des Sciences du Numérique de Nantes (Nantes Université – faculté des Sciences et Techniques (FST) 2 Chemin de la Houssinière BP 92208, 44322 Nantes Cedex 3 - France), LS2N - équipe SIMS - Signal, IMage et Son (France) |
| authorships[1].author.id | https://openalex.org/A5076305347 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2149-6581 |
| authorships[1].author.display_name | Vanessa Gonzalez Duque |
| authorships[1].countries | DE, FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[1].affiliations[0].raw_affiliation_string | TUM - Technische Universität Munchen - Technical University Munich - Université Technique de Munich (Arcisstrasse 21, D- 80333 München - Germany) |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210117005, https://openalex.org/I97188460 |
| authorships[1].affiliations[1].raw_affiliation_string | LS2N - Laboratoire des Sciences du Numérique de Nantes (Nantes Université – faculté des Sciences et Techniques (FST) 2 Chemin de la Houssinière BP 92208, 44322 Nantes Cedex 3 - France) |
| authorships[1].institutions[0].id | https://openalex.org/I62916508 |
| authorships[1].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Munich |
| authorships[1].institutions[1].id | https://openalex.org/I4210117005 |
| authorships[1].institutions[1].ror | https://ror.org/02snf8m58 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I100445878, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I205703379, https://openalex.org/I4210117005, https://openalex.org/I4210124215, https://openalex.org/I4210127572, https://openalex.org/I4210139971, https://openalex.org/I4210145102, https://openalex.org/I97188460, https://openalex.org/I97188460 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Laboratoire des Sciences du Numérique de Nantes |
| authorships[1].institutions[2].id | https://openalex.org/I97188460 |
| authorships[1].institutions[2].ror | https://ror.org/03gnr7b55 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I97188460 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | Nantes Université |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vanessa Gonzales Duque |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | LS2N - Laboratoire des Sciences du Numérique de Nantes (Nantes Université – faculté des Sciences et Techniques (FST) 2 Chemin de la Houssinière BP 92208, 44322 Nantes Cedex 3 - France), TUM - Technische Universität Munchen - Technical University Munich - Université Technique de Munich (Arcisstrasse 21, D- 80333 München - Germany) |
| authorships[2].author.id | https://openalex.org/A5070336639 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6408-6291 |
| authorships[2].author.display_name | Aurélie Sarcher |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97188460, https://openalex.org/I4392021216 |
| authorships[2].affiliations[0].raw_affiliation_string | MIP - Motricité, interactions, performance UR 4334 / Movement - Interactions - Performance (Laboratoire MIP - Université de Nantes - 23 Rue Recteur Schmitt, 44300 NANTES & UFR Sciences et Techniques - Département STAPS - Avenue Olivier Messiaen - 72085 LE MANS Cedex 9 - France) |
| authorships[2].institutions[0].id | https://openalex.org/I4392021216 |
| authorships[2].institutions[0].ror | https://ror.org/04q2ax456 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4392021216, https://openalex.org/I97188460 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Laboratoire Motricité, Interactions, Performance |
| authorships[2].institutions[1].id | https://openalex.org/I97188460 |
| authorships[2].institutions[1].ror | https://ror.org/03gnr7b55 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I97188460 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Nantes Université |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aurélie Sarcher |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MIP - Motricité, interactions, performance UR 4334 / Movement - Interactions - Performance (Laboratoire MIP - Université de Nantes - 23 Rue Recteur Schmitt, 44300 NANTES & UFR Sciences et Techniques - Département STAPS - Avenue Olivier Messiaen - 72085 LE MANS Cedex 9 - France) |
| authorships[3].author.id | https://openalex.org/A5073750003 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6277-8051 |
| authorships[3].author.display_name | Enzo Hollville |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I52435824 |
| authorships[3].affiliations[0].raw_affiliation_string | SEP (EA7370) - French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (INSEP, 11, avenue du Tremblay, 75012 Paris, France. - France) |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210125075 |
| authorships[3].affiliations[1].raw_affiliation_string | FFBAD - Fédération Française de Badminton (Fédération Française de Badminton 9-11 Avenue Michelet 93583 SAINT-OUEN Cedex - France) |
| authorships[3].institutions[0].id | https://openalex.org/I4210125075 |
| authorships[3].institutions[0].ror | https://ror.org/039w1jh10 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210125075 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Fédération française de cardiologie |
| authorships[3].institutions[1].id | https://openalex.org/I52435824 |
| authorships[3].institutions[1].ror | https://ror.org/03jczk481 |
| authorships[3].institutions[1].type | other |
| authorships[3].institutions[1].lineage | https://openalex.org/I52435824 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Institut National du Sport, de l'Expertise et de la Performance |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Enzo Hollville |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | FFBAD - Fédération Française de Badminton (Fédération Française de Badminton 9-11 Avenue Michelet 93583 SAINT-OUEN Cedex - France), SEP (EA7370) - French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (INSEP, 11, avenue du Tremblay, 75012 Paris, France. - France) |
| authorships[4].author.id | https://openalex.org/A5031387256 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7276-4793 |
| authorships[4].author.display_name | Antoine Nordez |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185839726 |
| authorships[4].affiliations[0].raw_affiliation_string | IUF - Institut universitaire de France (Maison des Universités 103 Boulevard Saint-Michel 75005 Paris - France) |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I97188460, https://openalex.org/I4392021216 |
| authorships[4].affiliations[1].raw_affiliation_string | MIP - Motricité, interactions, performance UR 4334 / Movement - Interactions - Performance (Laboratoire MIP - Université de Nantes - 23 Rue Recteur Schmitt, 44300 NANTES & UFR Sciences et Techniques - Département STAPS - Avenue Olivier Messiaen - 72085 LE MANS Cedex 9 - France) |
| authorships[4].institutions[0].id | https://openalex.org/I4392021216 |
| authorships[4].institutions[0].ror | https://ror.org/04q2ax456 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4392021216, https://openalex.org/I97188460 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Laboratoire Motricité, Interactions, Performance |
| authorships[4].institutions[1].id | https://openalex.org/I185839726 |
| authorships[4].institutions[1].ror | https://ror.org/055khg266 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I185839726 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Institut Universitaire de France |
| authorships[4].institutions[2].id | https://openalex.org/I97188460 |
| authorships[4].institutions[2].ror | https://ror.org/03gnr7b55 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I97188460 |
| authorships[4].institutions[2].country_code | FR |
| authorships[4].institutions[2].display_name | Nantes Université |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Antoine Nordez |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IUF - Institut universitaire de France (Maison des Universités 103 Boulevard Saint-Michel 75005 Paris - France), MIP - Motricité, interactions, performance UR 4334 / Movement - Interactions - Performance (Laboratoire MIP - Université de Nantes - 23 Rue Recteur Schmitt, 44300 NANTES & UFR Sciences et Techniques - Département STAPS - Avenue Olivier Messiaen - 72085 LE MANS Cedex 9 - France) |
| authorships[5].author.id | https://openalex.org/A5085264164 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0548-3019 |
| authorships[5].author.display_name | Giuseppe Rabita |
| authorships[5].countries | FR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I52435824 |
| authorships[5].affiliations[0].raw_affiliation_string | SEP (EA7370) - French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (INSEP, 11, avenue du Tremblay, 75012 Paris, France. - France) |
| authorships[5].institutions[0].id | https://openalex.org/I52435824 |
| authorships[5].institutions[0].ror | https://ror.org/03jczk481 |
| authorships[5].institutions[0].type | other |
| authorships[5].institutions[0].lineage | https://openalex.org/I52435824 |
| authorships[5].institutions[0].country_code | FR |
| authorships[5].institutions[0].display_name | Institut National du Sport, de l'Expertise et de la Performance |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Giuseppe Rabita |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | SEP (EA7370) - French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (INSEP, 11, avenue du Tremblay, 75012 Paris, France. - France) |
| authorships[6].author.id | https://openalex.org/A5034624231 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0377-2060 |
| authorships[6].author.display_name | Gaël Guilhem |
| authorships[6].countries | FR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I52435824 |
| authorships[6].affiliations[0].raw_affiliation_string | SEP (EA7370) - French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (INSEP, 11, avenue du Tremblay, 75012 Paris, France. - France) |
| authorships[6].institutions[0].id | https://openalex.org/I52435824 |
| authorships[6].institutions[0].ror | https://ror.org/03jczk481 |
| authorships[6].institutions[0].type | other |
| authorships[6].institutions[0].lineage | https://openalex.org/I52435824 |
| authorships[6].institutions[0].country_code | FR |
| authorships[6].institutions[0].display_name | Institut National du Sport, de l'Expertise et de la Performance |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Gaël Guilhem |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | SEP (EA7370) - French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (INSEP, 11, avenue du Tremblay, 75012 Paris, France. - France) |
| authorships[7].author.id | https://openalex.org/A5042645593 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2252-8717 |
| authorships[7].author.display_name | Diana Mateus |
| authorships[7].countries | FR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210117005, https://openalex.org/I97188460 |
| authorships[7].affiliations[0].raw_affiliation_string | LS2N - Laboratoire des Sciences du Numérique de Nantes (Nantes Université – faculté des Sciences et Techniques (FST) 2 Chemin de la Houssinière BP 92208, 44322 Nantes Cedex 3 - France) |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210117005 |
| authorships[7].affiliations[1].raw_affiliation_string | LS2N - équipe SIMS - Signal, IMage et Son (France) |
| authorships[7].institutions[0].id | https://openalex.org/I4210117005 |
| authorships[7].institutions[0].ror | https://ror.org/02snf8m58 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I100445878, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I205703379, https://openalex.org/I4210117005, https://openalex.org/I4210124215, https://openalex.org/I4210127572, https://openalex.org/I4210139971, https://openalex.org/I4210145102, https://openalex.org/I97188460, https://openalex.org/I97188460 |
| authorships[7].institutions[0].country_code | FR |
| authorships[7].institutions[0].display_name | Laboratoire des Sciences du Numérique de Nantes |
| authorships[7].institutions[1].id | https://openalex.org/I97188460 |
| authorships[7].institutions[1].ror | https://ror.org/03gnr7b55 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I97188460 |
| authorships[7].institutions[1].country_code | FR |
| authorships[7].institutions[1].display_name | Nantes Université |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Diana Mateus |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | LS2N - Laboratoire des Sciences du Numérique de Nantes (Nantes Université – faculté des Sciences et Techniques (FST) 2 Chemin de la Houssinière BP 92208, 44322 Nantes Cedex 3 - France), LS2N - équipe SIMS - Signal, IMage et Son (France) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2310.20355 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-02T00:00:00 |
| display_name | Muscle volume quantification: guiding transformers with anatomical priors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.970300018787384 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2310.20355 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2310.20355 |
| primary_location.id | doi:10.48550/arxiv.2310.20355 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2310.20355 |
| publication_date | 2023-10-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4221163766, https://openalex.org/W4318566866, https://openalex.org/W2468047096, https://openalex.org/W4224979365, https://openalex.org/W3134449767, https://openalex.org/W4212875960, https://openalex.org/W2526499595, https://openalex.org/W2885262262, https://openalex.org/W2796249795, https://openalex.org/W2997028236, https://openalex.org/W1556476978, https://openalex.org/W4362603627, https://openalex.org/W3091421397, https://openalex.org/W2782962239, https://openalex.org/W4366352031, https://openalex.org/W3127751679, https://openalex.org/W3138516171, https://openalex.org/W2970367578, https://openalex.org/W1901129140 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 3, 54, 125, 130, 185, 194, 215, 231 |
| abstract_inverted_index.18 | 60 |
| abstract_inverted_index.3D | 67 |
| abstract_inverted_index.By | 76 |
| abstract_inverted_index.In | 18 |
| abstract_inverted_index.MR | 89 |
| abstract_inverted_index.To | 117, 179 |
| abstract_inverted_index.We | 52, 139 |
| abstract_inverted_index.an | 199 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.by | 28 |
| abstract_inverted_index.in | 7, 88, 151, 192 |
| abstract_inverted_index.is | 2, 39, 84, 223 |
| abstract_inverted_index.it | 222 |
| abstract_inverted_index.of | 14, 32, 59, 62, 81, 147, 154, 188, 202, 218, 235 |
| abstract_inverted_index.on | 66, 97, 101, 129, 168, 198, 214 |
| abstract_inverted_index.to | 20, 71, 109, 171, 225 |
| abstract_inverted_index.we | 123, 166 |
| abstract_inverted_index.Our | 211 |
| abstract_inverted_index.and | 111, 135 |
| abstract_inverted_index.are | 107 |
| abstract_inverted_index.but | 9, 99 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.for | 11, 45, 56, 141, 157 |
| abstract_inverted_index.the | 12, 30, 42, 63, 79, 120, 142, 145, 152, 161, 173, 177, 182, 208, 239 |
| abstract_inverted_index.also | 10 |
| abstract_inverted_index.cope | 118 |
| abstract_inverted_index.from | 34, 207, 230 |
| abstract_inverted_index.gold | 43 |
| abstract_inverted_index.hard | 108 |
| abstract_inverted_index.limb | 65 |
| abstract_inverted_index.loss | 196 |
| abstract_inverted_index.only | 100 |
| abstract_inverted_index.rely | 96, 167 |
| abstract_inverted_index.show | 221 |
| abstract_inverted_index.such | 46, 73, 105, 148 |
| abstract_inverted_index.this | 189 |
| abstract_inverted_index.time | 144 |
| abstract_inverted_index.very | 50 |
| abstract_inverted_index.when | 86 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.work | 190 |
| abstract_inverted_index.Thus, | 91 |
| abstract_inverted_index.above | 121 |
| abstract_inverted_index.based | 128, 197 |
| abstract_inverted_index.being | 49 |
| abstract_inverted_index.cues. | 103 |
| abstract_inverted_index.data. | 210 |
| abstract_inverted_index.elite | 219 |
| abstract_inverted_index.first | 143 |
| abstract_inverted_index.large | 236 |
| abstract_inverted_index.lower | 64 |
| abstract_inverted_index.other | 22 |
| abstract_inverted_index.prior | 241 |
| abstract_inverted_index.shape | 23, 158 |
| abstract_inverted_index.small | 233 |
| abstract_inverted_index.still | 40 |
| abstract_inverted_index.their | 77, 112 |
| abstract_inverted_index.today | 41 |
| abstract_inverted_index.train | 226 |
| abstract_inverted_index.while | 238 |
| abstract_inverted_index.Images | 70 |
| abstract_inverted_index.Manual | 37 |
| abstract_inverted_index.Muscle | 0 |
| abstract_inverted_index.across | 115 |
| abstract_inverted_index.adding | 193 |
| abstract_inverted_index.assist | 72 |
| abstract_inverted_index.better | 244 |
| abstract_inverted_index.blocks | 170 |
| abstract_inverted_index.cannot | 95 |
| abstract_inverted_index.detect | 110 |
| abstract_inverted_index.hybrid | 131, 149, 228 |
| abstract_inverted_index.matrix | 201 |
| abstract_inverted_index.method | 55 |
| abstract_inverted_index.models | 229 |
| abstract_inverted_index.muscle | 92, 155, 164, 204 |
| abstract_inverted_index.second | 186 |
| abstract_inverted_index.tissue | 80 |
| abstract_inverted_index.unique | 216 |
| abstract_inverted_index.useful | 4 |
| abstract_inverted_index.varies | 114 |
| abstract_inverted_index.visual | 136 |
| abstract_inverted_index.volume | 1 |
| abstract_inverted_index.Images. | 90 |
| abstract_inverted_index.between | 176 |
| abstract_inverted_index.blocks. | 138 |
| abstract_inverted_index.capture | 172 |
| abstract_inverted_index.complex | 227 |
| abstract_inverted_index.context | 153 |
| abstract_inverted_index.contour | 102 |
| abstract_inverted_index.despite | 48 |
| abstract_inverted_index.exploit | 181 |
| abstract_inverted_index.favours | 243 |
| abstract_inverted_index.further | 180 |
| abstract_inverted_index.images. | 36 |
| abstract_inverted_index.medical | 35 |
| abstract_inverted_index.muscles | 31, 61, 83 |
| abstract_inverted_index.nature, | 78 |
| abstract_inverted_index.priors, | 184 |
| abstract_inverted_index.propose | 53, 124 |
| abstract_inverted_index.results | 213 |
| abstract_inverted_index.sports, | 8 |
| abstract_inverted_index.volume, | 21 |
| abstract_inverted_index.However, | 104 |
| abstract_inverted_index.Magnetic | 68 |
| abstract_inverted_index.addition | 19 |
| abstract_inverted_index.approach | 127 |
| abstract_inverted_index.athletes | 220 |
| abstract_inverted_index.consists | 191 |
| abstract_inverted_index.contours | 106 |
| abstract_inverted_index.database | 217, 234 |
| abstract_inverted_index.interest | 33 |
| abstract_inverted_index.muscles. | 178 |
| abstract_inverted_index.observed | 87 |
| abstract_inverted_index.possible | 224 |
| abstract_inverted_index.standard | 44 |
| abstract_inverted_index.training | 209 |
| abstract_inverted_index.volumes, | 237 |
| abstract_inverted_index.Resonance | 69 |
| abstract_inverted_index.adjacency | 200 |
| abstract_inverted_index.analysis. | 75, 159 |
| abstract_inverted_index.automatic | 57 |
| abstract_inverted_index.behaviour | 146 |
| abstract_inverted_index.biomarker | 6 |
| abstract_inverted_index.combining | 133 |
| abstract_inverted_index.different | 82 |
| abstract_inverted_index.diseases. | 17 |
| abstract_inverted_index.estimated | 206 |
| abstract_inverted_index.extracted | 27 |
| abstract_inverted_index.follow-up | 13 |
| abstract_inverted_index.longrange | 174 |
| abstract_inverted_index.plausible | 203 |
| abstract_inverted_index.relations | 175 |
| abstract_inverted_index.subjects. | 116 |
| abstract_inverted_index.thickness | 113 |
| abstract_inverted_index.algorithms | 94 |
| abstract_inverted_index.anatomical | 163, 183, 240 |
| abstract_inverted_index.appearance | 98 |
| abstract_inverted_index.biomarkers | 24 |
| abstract_inverted_index.consistent | 162 |
| abstract_inverted_index.relatively | 232 |
| abstract_inverted_index.segmenting | 29 |
| abstract_inverted_index.Considering | 160 |
| abstract_inverted_index.challenges, | 122 |
| abstract_inverted_index.investigate | 140 |
| abstract_inverted_index.transformer | 137, 169 |
| abstract_inverted_index.contribution | 187 |
| abstract_inverted_index.degenerative | 15 |
| abstract_inverted_index.experimental | 212 |
| abstract_inverted_index.measurements | 47 |
| abstract_inverted_index.morphometric | 74 |
| abstract_inverted_index.predictions. | 245 |
| abstract_inverted_index.quantitative | 5 |
| abstract_inverted_index.segmentation | 38, 58, 93, 126, 156 |
| abstract_inverted_index.architecture, | 132 |
| abstract_inverted_index.architectures | 150 |
| abstract_inverted_index.convolutional | 134 |
| abstract_inverted_index.configuration, | 165 |
| abstract_inverted_index.neighbourhoods | 205 |
| abstract_inverted_index.regularisation | 195, 242 |
| abstract_inverted_index.time-consuming. | 51 |
| abstract_inverted_index.musculo-skelletal | 16 |
| abstract_inverted_index.undistinguishable | 85 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |