MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.05170
Nucleus detection and classification (NDC) in histopathology analysis is a fundamental task that underpins a wide range of high-level pathology applications. However, existing methods heavily rely on labor-intensive nucleus-level annotations and struggle to fully exploit large-scale unlabeled data for learning discriminative nucleus representations. In this work, we propose MUSE (MUlti-scale denSE self-distillation), a novel self-supervised learning method tailored for NDC. At its core is NuLo (Nucleus-based Local self-distillation), a coordinate-guided mechanism that enables flexible local self-distillation based on predicted nucleus positions. By removing the need for strict spatial alignment between augmented views, NuLo allows critical cross-scale alignment, thus unlocking the capacity of models for fine-grained nucleus-level representation. To support MUSE, we design a simple yet effective encoder-decoder architecture and a large field-of-view semi-supervised fine-tuning strategy that together maximize the value of unlabeled pathology images. Extensive experiments on three widely used benchmarks demonstrate that MUSE effectively addresses the core challenges of histopathological NDC. The resulting models not only surpass state-of-the-art supervised baselines but also outperform generic pathology foundation models.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.05170
- https://arxiv.org/pdf/2511.05170
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416271029
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416271029Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.05170Digital Object Identifier
- Title
-
MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and ClassificationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-07Full publication date if available
- Authors
-
Hanqing Chao, Bokai Zhao, Yelin Yang, Dongmei Fu, Le Lu, Ke Yan, Dakai Jin, Yingnan Bian, Hui JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.05170Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.05170Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.05170Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416271029 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.05170 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.05170 |
| ids.openalex | https://openalex.org/W4416271029 |
| fwci | |
| type | preprint |
| title | MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.05170 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.05170 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.05170 |
| locations[1].id | doi:10.48550/arxiv.2511.05170 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.05170 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070759471 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5973-2343 |
| authorships[0].author.display_name | Hanqing Chao |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Chao, Hanqing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022773043 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bokai Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Bokai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103985025 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yelin Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Yelin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101511618 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5404-1084 |
| authorships[3].author.display_name | Dongmei Fu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fu, Dongmei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113373238 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0764-2316 |
| authorships[4].author.display_name | Le Lu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lu, Le |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5104074893 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6937-5618 |
| authorships[5].author.display_name | Ke Yan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yan, Ke |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5027768127 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4806-2943 |
| authorships[6].author.display_name | Dakai Jin |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jin, Dakai |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5102936149 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8651-8737 |
| authorships[7].author.display_name | Yingnan Bian |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bian, Yun |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5008456610 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6257-8145 |
| authorships[8].author.display_name | Hui Jiang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jiang, Hui |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.05170 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-11T00:00:00 |
| display_name | MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:51:43.310968 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.05170 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.05170 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.05170 |
| primary_location.id | pmh:oai:arXiv.org:2511.05170 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.05170 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.05170 |
| publication_date | 2025-11-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 14, 52, 68, 112, 119 |
| abstract_inverted_index.At | 60 |
| abstract_inverted_index.By | 81 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.To | 107 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.is | 8, 63 |
| abstract_inverted_index.of | 17, 101, 130, 149 |
| abstract_inverted_index.on | 26, 77, 136 |
| abstract_inverted_index.to | 32 |
| abstract_inverted_index.we | 46, 110 |
| abstract_inverted_index.The | 152 |
| abstract_inverted_index.and | 2, 30, 118 |
| abstract_inverted_index.but | 161 |
| abstract_inverted_index.for | 38, 58, 85, 103 |
| abstract_inverted_index.its | 61 |
| abstract_inverted_index.not | 155 |
| abstract_inverted_index.the | 83, 99, 128, 146 |
| abstract_inverted_index.yet | 114 |
| abstract_inverted_index.MUSE | 48, 143 |
| abstract_inverted_index.NDC. | 59, 151 |
| abstract_inverted_index.NuLo | 64, 92 |
| abstract_inverted_index.also | 162 |
| abstract_inverted_index.core | 62, 147 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.need | 84 |
| abstract_inverted_index.only | 156 |
| abstract_inverted_index.rely | 25 |
| abstract_inverted_index.task | 11 |
| abstract_inverted_index.that | 12, 71, 125, 142 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.thus | 97 |
| abstract_inverted_index.used | 139 |
| abstract_inverted_index.wide | 15 |
| abstract_inverted_index.(NDC) | 4 |
| abstract_inverted_index.Local | 66 |
| abstract_inverted_index.MUSE, | 109 |
| abstract_inverted_index.based | 76 |
| abstract_inverted_index.denSE | 50 |
| abstract_inverted_index.fully | 33 |
| abstract_inverted_index.large | 120 |
| abstract_inverted_index.local | 74 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.range | 16 |
| abstract_inverted_index.three | 137 |
| abstract_inverted_index.value | 129 |
| abstract_inverted_index.work, | 45 |
| abstract_inverted_index.allows | 93 |
| abstract_inverted_index.design | 111 |
| abstract_inverted_index.method | 56 |
| abstract_inverted_index.models | 102, 154 |
| abstract_inverted_index.simple | 113 |
| abstract_inverted_index.strict | 86 |
| abstract_inverted_index.views, | 91 |
| abstract_inverted_index.widely | 138 |
| abstract_inverted_index.Nucleus | 0 |
| abstract_inverted_index.between | 89 |
| abstract_inverted_index.enables | 72 |
| abstract_inverted_index.exploit | 34 |
| abstract_inverted_index.generic | 164 |
| abstract_inverted_index.heavily | 24 |
| abstract_inverted_index.images. | 133 |
| abstract_inverted_index.methods | 23 |
| abstract_inverted_index.models. | 167 |
| abstract_inverted_index.nucleus | 41, 79 |
| abstract_inverted_index.propose | 47 |
| abstract_inverted_index.spatial | 87 |
| abstract_inverted_index.support | 108 |
| abstract_inverted_index.surpass | 157 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.analysis | 7 |
| abstract_inverted_index.capacity | 100 |
| abstract_inverted_index.critical | 94 |
| abstract_inverted_index.existing | 22 |
| abstract_inverted_index.flexible | 73 |
| abstract_inverted_index.learning | 39, 55 |
| abstract_inverted_index.maximize | 127 |
| abstract_inverted_index.removing | 82 |
| abstract_inverted_index.strategy | 124 |
| abstract_inverted_index.struggle | 31 |
| abstract_inverted_index.tailored | 57 |
| abstract_inverted_index.together | 126 |
| abstract_inverted_index.Extensive | 134 |
| abstract_inverted_index.addresses | 145 |
| abstract_inverted_index.alignment | 88 |
| abstract_inverted_index.augmented | 90 |
| abstract_inverted_index.baselines | 160 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.effective | 115 |
| abstract_inverted_index.mechanism | 70 |
| abstract_inverted_index.pathology | 19, 132, 165 |
| abstract_inverted_index.predicted | 78 |
| abstract_inverted_index.resulting | 153 |
| abstract_inverted_index.underpins | 13 |
| abstract_inverted_index.unlabeled | 36, 131 |
| abstract_inverted_index.unlocking | 98 |
| abstract_inverted_index.alignment, | 96 |
| abstract_inverted_index.benchmarks | 140 |
| abstract_inverted_index.challenges | 148 |
| abstract_inverted_index.foundation | 166 |
| abstract_inverted_index.high-level | 18 |
| abstract_inverted_index.outperform | 163 |
| abstract_inverted_index.positions. | 80 |
| abstract_inverted_index.supervised | 159 |
| abstract_inverted_index.annotations | 29 |
| abstract_inverted_index.cross-scale | 95 |
| abstract_inverted_index.demonstrate | 141 |
| abstract_inverted_index.effectively | 144 |
| abstract_inverted_index.experiments | 135 |
| abstract_inverted_index.fine-tuning | 123 |
| abstract_inverted_index.fundamental | 10 |
| abstract_inverted_index.large-scale | 35 |
| abstract_inverted_index.(MUlti-scale | 49 |
| abstract_inverted_index.architecture | 117 |
| abstract_inverted_index.fine-grained | 104 |
| abstract_inverted_index.applications. | 20 |
| abstract_inverted_index.field-of-view | 121 |
| abstract_inverted_index.nucleus-level | 28, 105 |
| abstract_inverted_index.(Nucleus-based | 65 |
| abstract_inverted_index.classification | 3 |
| abstract_inverted_index.discriminative | 40 |
| abstract_inverted_index.histopathology | 6 |
| abstract_inverted_index.encoder-decoder | 116 |
| abstract_inverted_index.labor-intensive | 27 |
| abstract_inverted_index.representation. | 106 |
| abstract_inverted_index.self-supervised | 54 |
| abstract_inverted_index.semi-supervised | 122 |
| abstract_inverted_index.representations. | 42 |
| abstract_inverted_index.state-of-the-art | 158 |
| abstract_inverted_index.coordinate-guided | 69 |
| abstract_inverted_index.histopathological | 150 |
| abstract_inverted_index.self-distillation | 75 |
| abstract_inverted_index.self-distillation), | 51, 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |