MuSL: Multimodal deep learning for generalizable prediction of synthetic lethality from sequence, transcriptomic, and network data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17098066
MuSL: Multimodal deep learning for generalizable prediction of synthetic lethality from sequence, transcriptomic, and network data Model Architecture The MuSL framework integrates multimodal biological data through a tri-branch deep learning architecture to predict synthetic lethal (SL) gene pairs. As illustrated in the figure above, the model jointly learns from transcriptomic images, statistical features, and protein interaction networks. 1. Feature Learning Pathways MuSL processes input data through three complementary pathways: Image-Based Expression Branch (CNN): Transforms the transcriptome profiles of gene pairs into two-dimensional joint density distribution maps (32×3232×32 histograms). Utilizes a Convolutional Neural Network (CNN) to automatically extract spatial features, capturing complex patterns such as functional decoupling and mutual exclusivity directly from raw data. Statistical Feature Branch (MLP): Extracts 35 handcrafted statistical features capturing explicit expression patterns (e.g., correlation, variation) from the same transcriptomic data. Projects these features through a dedicated fully connected layer (MLP) to form a representation that complements the deep image features. Graph-Based Network Branch (GNN): Models the Protein-Protein Interaction (PPI) network using a Graph Neural Network (GNN). Crucial Innovation: Initializes node features using ESM2 protein language model embeddings, integrating evolutionary and sequence-level priors to generate robust topological relationship features. 2. Adaptive Fusion & Prediction Cross-Modal Integration: The framework employs a cross-attention and gating fusion mechanism to dynamically weight and integrate features from all three pathways (CNN, Statistics, and GNN) based on their contextual importance. Multi-Head Prediction: Predictions are generated from both modality-specific heads and the final fused representation using four specialized classifiers. 3. Training Strategy Composite Loss Function: The model optimizes a joint objective that combines: Classification losses from all four prediction heads. Contrastive learning components to enforce semantic alignment and improve cross-modal consistency. Required Data Files The following H5AD files need to be downloaded and placed in the processed_data/ directory: a549_cell_line_imputed.h5ad - A549 cell line single-cell RNA-seq data k562_cell_line_imputed.h5ad - K562 cell line single-cell RNA-seq data tcga_all.h5ad - TCGA bulk RNA-seq data protein_embeddings.pt - Embeddings from ESM2 all_emb_genept.pkl - Embeddings from GenePT
Related Topics
- Type
- dataset
- Landing Page
- https://doi.org/10.5281/zenodo.17098066
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111412325
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111412325Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17098066Digital Object Identifier
- Title
-
MuSL: Multimodal deep learning for generalizable prediction of synthetic lethality from sequence, transcriptomic, and network dataWork title
- Type
-
datasetOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Fang Yimiao, Wang Jie, Hong, Mutian, Zheng JieList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17098066Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17098066Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Deep learning, Convolutional neural network, Feature learning, Machine learning, Fusion mechanism, Feature (linguistics), Representation (politics), Network architecture, Synthetic lethality, Feature engineering, Statistical model, Graph, Multimodal learning, Pattern recognition (psychology), ENCODE, Data modeling, Artificial neural network, Synthetic data, Network model, Deep belief network, Data mining, Joint probability distribution, Node (physics), Interaction network, Robustness (evolution), Gene regulatory network, External Data Representation, Feature extraction, Prior probability, Statistical relational learning, Feature vector, Raw data, Subspace topology, VisualizationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111412325 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17098066 |
| ids.doi | https://doi.org/10.5281/zenodo.17098066 |
| ids.openalex | https://openalex.org/W7111412325 |
| fwci | |
| type | dataset |
| title | MuSL: Multimodal deep learning for generalizable prediction of synthetic lethality from sequence, transcriptomic, and network data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7816913723945618 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7607240676879883 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7185444831848145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5548970699310303 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C59404180 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5481979846954346 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[4].display_name | Feature learning |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5085026025772095 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C173414695 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4919353425502777 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5510276 |
| concepts[6].display_name | Fusion mechanism |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4365863502025604 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C2776359362 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42364296317100525 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[8].display_name | Representation (politics) |
| concepts[9].id | https://openalex.org/C193415008 |
| concepts[9].level | 2 |
| concepts[9].score | 0.40632376074790955 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[9].display_name | Network architecture |
| concepts[10].id | https://openalex.org/C2778502085 |
| concepts[10].level | 4 |
| concepts[10].score | 0.40123650431632996 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7662767 |
| concepts[10].display_name | Synthetic lethality |
| concepts[11].id | https://openalex.org/C2778827112 |
| concepts[11].level | 3 |
| concepts[11].score | 0.40055808424949646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[11].display_name | Feature engineering |
| concepts[12].id | https://openalex.org/C114289077 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3793836534023285 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3284399 |
| concepts[12].display_name | Statistical model |
| concepts[13].id | https://openalex.org/C132525143 |
| concepts[13].level | 2 |
| concepts[13].score | 0.37044504284858704 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[13].display_name | Graph |
| concepts[14].id | https://openalex.org/C2780660688 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3561975061893463 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25052564 |
| concepts[14].display_name | Multimodal learning |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.35353460907936096 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C66746571 |
| concepts[16].level | 3 |
| concepts[16].score | 0.3508971035480499 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[16].display_name | ENCODE |
| concepts[17].id | https://openalex.org/C67186912 |
| concepts[17].level | 2 |
| concepts[17].score | 0.34451884031295776 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[17].display_name | Data modeling |
| concepts[18].id | https://openalex.org/C50644808 |
| concepts[18].level | 2 |
| concepts[18].score | 0.34326180815696716 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[18].display_name | Artificial neural network |
| concepts[19].id | https://openalex.org/C160920958 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3361128866672516 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[19].display_name | Synthetic data |
| concepts[20].id | https://openalex.org/C104122410 |
| concepts[20].level | 2 |
| concepts[20].score | 0.33428603410720825 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1416406 |
| concepts[20].display_name | Network model |
| concepts[21].id | https://openalex.org/C97385483 |
| concepts[21].level | 3 |
| concepts[21].score | 0.3258369266986847 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[21].display_name | Deep belief network |
| concepts[22].id | https://openalex.org/C124101348 |
| concepts[22].level | 1 |
| concepts[22].score | 0.30335721373558044 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[22].display_name | Data mining |
| concepts[23].id | https://openalex.org/C18653775 |
| concepts[23].level | 2 |
| concepts[23].score | 0.29099103808403015 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1333358 |
| concepts[23].display_name | Joint probability distribution |
| concepts[24].id | https://openalex.org/C62611344 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2851468324661255 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[24].display_name | Node (physics) |
| concepts[25].id | https://openalex.org/C55105296 |
| concepts[25].level | 3 |
| concepts[25].score | 0.27895110845565796 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q841382 |
| concepts[25].display_name | Interaction network |
| concepts[26].id | https://openalex.org/C63479239 |
| concepts[26].level | 3 |
| concepts[26].score | 0.2763698697090149 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[26].display_name | Robustness (evolution) |
| concepts[27].id | https://openalex.org/C67339327 |
| concepts[27].level | 4 |
| concepts[27].score | 0.2718821167945862 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1502576 |
| concepts[27].display_name | Gene regulatory network |
| concepts[28].id | https://openalex.org/C116409475 |
| concepts[28].level | 2 |
| concepts[28].score | 0.26979130506515503 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q1385056 |
| concepts[28].display_name | External Data Representation |
| concepts[29].id | https://openalex.org/C52622490 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2695760428905487 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[29].display_name | Feature extraction |
| concepts[30].id | https://openalex.org/C177769412 |
| concepts[30].level | 3 |
| concepts[30].score | 0.2673935294151306 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[30].display_name | Prior probability |
| concepts[31].id | https://openalex.org/C177877439 |
| concepts[31].level | 3 |
| concepts[31].score | 0.26354509592056274 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q7604413 |
| concepts[31].display_name | Statistical relational learning |
| concepts[32].id | https://openalex.org/C83665646 |
| concepts[32].level | 2 |
| concepts[32].score | 0.2614210844039917 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[32].display_name | Feature vector |
| concepts[33].id | https://openalex.org/C132964779 |
| concepts[33].level | 2 |
| concepts[33].score | 0.2554909288883209 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[33].display_name | Raw data |
| concepts[34].id | https://openalex.org/C32834561 |
| concepts[34].level | 2 |
| concepts[34].score | 0.25312668085098267 |
| concepts[34].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[34].display_name | Subspace topology |
| concepts[35].id | https://openalex.org/C36464697 |
| concepts[35].level | 2 |
| concepts[35].score | 0.2508961260318756 |
| concepts[35].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[35].display_name | Visualization |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7185444831848145 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.5548970699310303 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/feature-learning |
| keywords[2].score | 0.5481979846954346 |
| keywords[2].display_name | Feature learning |
| keywords[3].id | https://openalex.org/keywords/fusion-mechanism |
| keywords[3].score | 0.4919353425502777 |
| keywords[3].display_name | Fusion mechanism |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.4365863502025604 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.42364296317100525 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/network-architecture |
| keywords[6].score | 0.40632376074790955 |
| keywords[6].display_name | Network architecture |
| keywords[7].id | https://openalex.org/keywords/synthetic-lethality |
| keywords[7].score | 0.40123650431632996 |
| keywords[7].display_name | Synthetic lethality |
| keywords[8].id | https://openalex.org/keywords/feature-engineering |
| keywords[8].score | 0.40055808424949646 |
| keywords[8].display_name | Feature engineering |
| keywords[9].id | https://openalex.org/keywords/statistical-model |
| keywords[9].score | 0.3793836534023285 |
| keywords[9].display_name | Statistical model |
| language | |
| locations[0].id | doi:10.5281/zenodo.17098066 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17098066 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A4311865212 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fang Yimiao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fang, Yimiao |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A1762459914 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5964-6787 |
| authorships[1].author.display_name | Wang Jie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Jie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hong, Mutian |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hong, Mutian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2023763424 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4033-2718 |
| authorships[3].author.display_name | Zheng Jie |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zheng, Jie |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17098066 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | MuSL: Multimodal deep learning for generalizable prediction of synthetic lethality from sequence, transcriptomic, and network data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17098066 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17098066 |
| primary_location.id | doi:10.5281/zenodo.17098066 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17098066 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.& | 195 |
| abstract_inverted_index.- | 295, 303, 311, 317, 322 |
| abstract_inverted_index.a | 26, 89, 138, 146, 165, 202, 254 |
| abstract_inverted_index.1. | 57 |
| abstract_inverted_index.2. | 192 |
| abstract_inverted_index.3. | 245 |
| abstract_inverted_index.35 | 118 |
| abstract_inverted_index.As | 38 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.be | 286 |
| abstract_inverted_index.in | 40, 290 |
| abstract_inverted_index.of | 7, 77 |
| abstract_inverted_index.on | 223 |
| abstract_inverted_index.to | 31, 94, 144, 186, 208, 269, 285 |
| abstract_inverted_index.The | 18, 199, 251, 280 |
| abstract_inverted_index.all | 215, 262 |
| abstract_inverted_index.and | 13, 53, 106, 183, 204, 211, 220, 236, 273, 288 |
| abstract_inverted_index.are | 230 |
| abstract_inverted_index.for | 4 |
| abstract_inverted_index.raw | 111 |
| abstract_inverted_index.the | 41, 44, 74, 130, 150, 159, 237, 291 |
| abstract_inverted_index.(SL) | 35 |
| abstract_inverted_index.A549 | 296 |
| abstract_inverted_index.Data | 278 |
| abstract_inverted_index.ESM2 | 176, 320 |
| abstract_inverted_index.GNN) | 221 |
| abstract_inverted_index.H5AD | 282 |
| abstract_inverted_index.K562 | 304 |
| abstract_inverted_index.Loss | 249 |
| abstract_inverted_index.MuSL | 19, 61 |
| abstract_inverted_index.TCGA | 312 |
| abstract_inverted_index.both | 233 |
| abstract_inverted_index.bulk | 313 |
| abstract_inverted_index.cell | 297, 305 |
| abstract_inverted_index.data | 15, 24, 64, 301, 309, 315 |
| abstract_inverted_index.deep | 2, 28, 151 |
| abstract_inverted_index.form | 145 |
| abstract_inverted_index.four | 242, 263 |
| abstract_inverted_index.from | 10, 48, 110, 129, 214, 232, 261, 319, 324 |
| abstract_inverted_index.gene | 36, 78 |
| abstract_inverted_index.into | 80 |
| abstract_inverted_index.line | 298, 306 |
| abstract_inverted_index.maps | 85 |
| abstract_inverted_index.need | 284 |
| abstract_inverted_index.node | 173 |
| abstract_inverted_index.same | 131 |
| abstract_inverted_index.such | 102 |
| abstract_inverted_index.that | 148, 257 |
| abstract_inverted_index.(CNN) | 93 |
| abstract_inverted_index.(CNN, | 218 |
| abstract_inverted_index.(MLP) | 143 |
| abstract_inverted_index.(PPI) | 162 |
| abstract_inverted_index.Files | 279 |
| abstract_inverted_index.Graph | 166 |
| abstract_inverted_index.Model | 16 |
| abstract_inverted_index.MuSL: | 0 |
| abstract_inverted_index.based | 222 |
| abstract_inverted_index.data. | 112, 133 |
| abstract_inverted_index.files | 283 |
| abstract_inverted_index.final | 238 |
| abstract_inverted_index.fully | 140 |
| abstract_inverted_index.fused | 239 |
| abstract_inverted_index.heads | 235 |
| abstract_inverted_index.image | 152 |
| abstract_inverted_index.input | 63 |
| abstract_inverted_index.joint | 82, 255 |
| abstract_inverted_index.layer | 142 |
| abstract_inverted_index.model | 45, 179, 252 |
| abstract_inverted_index.pairs | 79 |
| abstract_inverted_index.their | 224 |
| abstract_inverted_index.these | 135 |
| abstract_inverted_index.three | 66, 216 |
| abstract_inverted_index.using | 164, 175, 241 |
| abstract_inverted_index.(CNN): | 72 |
| abstract_inverted_index.(GNN). | 169 |
| abstract_inverted_index.(GNN): | 157 |
| abstract_inverted_index.(MLP): | 116 |
| abstract_inverted_index.(e.g., | 126 |
| abstract_inverted_index.Branch | 71, 115, 156 |
| abstract_inverted_index.Fusion | 194 |
| abstract_inverted_index.GenePT | 325 |
| abstract_inverted_index.Models | 158 |
| abstract_inverted_index.Neural | 91, 167 |
| abstract_inverted_index.above, | 43 |
| abstract_inverted_index.figure | 42 |
| abstract_inverted_index.fusion | 206 |
| abstract_inverted_index.gating | 205 |
| abstract_inverted_index.heads. | 265 |
| abstract_inverted_index.learns | 47 |
| abstract_inverted_index.lethal | 34 |
| abstract_inverted_index.losses | 260 |
| abstract_inverted_index.mutual | 107 |
| abstract_inverted_index.pairs. | 37 |
| abstract_inverted_index.placed | 289 |
| abstract_inverted_index.priors | 185 |
| abstract_inverted_index.robust | 188 |
| abstract_inverted_index.weight | 210 |
| abstract_inverted_index.Crucial | 170 |
| abstract_inverted_index.Feature | 58, 114 |
| abstract_inverted_index.Network | 92, 155, 168 |
| abstract_inverted_index.RNA-seq | 300, 308, 314 |
| abstract_inverted_index.complex | 100 |
| abstract_inverted_index.density | 83 |
| abstract_inverted_index.employs | 201 |
| abstract_inverted_index.enforce | 270 |
| abstract_inverted_index.extract | 96 |
| abstract_inverted_index.images, | 50 |
| abstract_inverted_index.improve | 274 |
| abstract_inverted_index.jointly | 46 |
| abstract_inverted_index.network | 14, 163 |
| abstract_inverted_index.predict | 32 |
| abstract_inverted_index.protein | 54, 177 |
| abstract_inverted_index.spatial | 97 |
| abstract_inverted_index.through | 25, 65, 137 |
| abstract_inverted_index.Adaptive | 193 |
| abstract_inverted_index.Extracts | 117 |
| abstract_inverted_index.Learning | 59 |
| abstract_inverted_index.Pathways | 60 |
| abstract_inverted_index.Projects | 134 |
| abstract_inverted_index.Required | 277 |
| abstract_inverted_index.Strategy | 247 |
| abstract_inverted_index.Training | 246 |
| abstract_inverted_index.Utilizes | 88 |
| abstract_inverted_index.directly | 109 |
| abstract_inverted_index.explicit | 123 |
| abstract_inverted_index.features | 121, 136, 174, 213 |
| abstract_inverted_index.generate | 187 |
| abstract_inverted_index.language | 178 |
| abstract_inverted_index.learning | 3, 29, 267 |
| abstract_inverted_index.pathways | 217 |
| abstract_inverted_index.patterns | 101, 125 |
| abstract_inverted_index.profiles | 76 |
| abstract_inverted_index.semantic | 271 |
| abstract_inverted_index.Composite | 248 |
| abstract_inverted_index.Function: | 250 |
| abstract_inverted_index.alignment | 272 |
| abstract_inverted_index.capturing | 99, 122 |
| abstract_inverted_index.combines: | 258 |
| abstract_inverted_index.connected | 141 |
| abstract_inverted_index.dedicated | 139 |
| abstract_inverted_index.features, | 52, 98 |
| abstract_inverted_index.features. | 153, 191 |
| abstract_inverted_index.following | 281 |
| abstract_inverted_index.framework | 20, 200 |
| abstract_inverted_index.generated | 231 |
| abstract_inverted_index.integrate | 212 |
| abstract_inverted_index.lethality | 9 |
| abstract_inverted_index.mechanism | 207 |
| abstract_inverted_index.networks. | 56 |
| abstract_inverted_index.objective | 256 |
| abstract_inverted_index.optimizes | 253 |
| abstract_inverted_index.pathways: | 68 |
| abstract_inverted_index.processes | 62 |
| abstract_inverted_index.sequence, | 11 |
| abstract_inverted_index.synthetic | 8, 33 |
| abstract_inverted_index.Embeddings | 318, 323 |
| abstract_inverted_index.Expression | 70 |
| abstract_inverted_index.Multi-Head | 227 |
| abstract_inverted_index.Multimodal | 1 |
| abstract_inverted_index.Prediction | 196 |
| abstract_inverted_index.Transforms | 73 |
| abstract_inverted_index.biological | 23 |
| abstract_inverted_index.components | 268 |
| abstract_inverted_index.contextual | 225 |
| abstract_inverted_index.decoupling | 105 |
| abstract_inverted_index.directory: | 293 |
| abstract_inverted_index.downloaded | 287 |
| abstract_inverted_index.expression | 124 |
| abstract_inverted_index.functional | 104 |
| abstract_inverted_index.integrates | 21 |
| abstract_inverted_index.multimodal | 22 |
| abstract_inverted_index.prediction | 6, 264 |
| abstract_inverted_index.tri-branch | 27 |
| abstract_inverted_index.variation) | 128 |
| abstract_inverted_index.Contrastive | 266 |
| abstract_inverted_index.Cross-Modal | 197 |
| abstract_inverted_index.Graph-Based | 154 |
| abstract_inverted_index.Image-Based | 69 |
| abstract_inverted_index.Initializes | 172 |
| abstract_inverted_index.Innovation: | 171 |
| abstract_inverted_index.Interaction | 161 |
| abstract_inverted_index.Prediction: | 228 |
| abstract_inverted_index.Predictions | 229 |
| abstract_inverted_index.Statistical | 113 |
| abstract_inverted_index.Statistics, | 219 |
| abstract_inverted_index.complements | 149 |
| abstract_inverted_index.cross-modal | 275 |
| abstract_inverted_index.dynamically | 209 |
| abstract_inverted_index.embeddings, | 180 |
| abstract_inverted_index.exclusivity | 108 |
| abstract_inverted_index.handcrafted | 119 |
| abstract_inverted_index.illustrated | 39 |
| abstract_inverted_index.importance. | 226 |
| abstract_inverted_index.integrating | 181 |
| abstract_inverted_index.interaction | 55 |
| abstract_inverted_index.single-cell | 299, 307 |
| abstract_inverted_index.specialized | 243 |
| abstract_inverted_index.statistical | 51, 120 |
| abstract_inverted_index.topological | 189 |
| abstract_inverted_index.Architecture | 17 |
| abstract_inverted_index.Integration: | 198 |
| abstract_inverted_index.architecture | 30 |
| abstract_inverted_index.classifiers. | 244 |
| abstract_inverted_index.consistency. | 276 |
| abstract_inverted_index.correlation, | 127 |
| abstract_inverted_index.distribution | 84 |
| abstract_inverted_index.evolutionary | 182 |
| abstract_inverted_index.histograms). | 87 |
| abstract_inverted_index.relationship | 190 |
| abstract_inverted_index.(32×3232×32 | 86 |
| abstract_inverted_index.Convolutional | 90 |
| abstract_inverted_index.automatically | 95 |
| abstract_inverted_index.complementary | 67 |
| abstract_inverted_index.generalizable | 5 |
| abstract_inverted_index.tcga_all.h5ad | 310 |
| abstract_inverted_index.transcriptome | 75 |
| abstract_inverted_index.Classification | 259 |
| abstract_inverted_index.representation | 147, 240 |
| abstract_inverted_index.sequence-level | 184 |
| abstract_inverted_index.transcriptomic | 49, 132 |
| abstract_inverted_index.Protein-Protein | 160 |
| abstract_inverted_index.cross-attention | 203 |
| abstract_inverted_index.processed_data/ | 292 |
| abstract_inverted_index.transcriptomic, | 12 |
| abstract_inverted_index.two-dimensional | 81 |
| abstract_inverted_index.modality-specific | 234 |
| abstract_inverted_index.all_emb_genept.pkl | 321 |
| abstract_inverted_index.protein_embeddings.pt | 316 |
| abstract_inverted_index.a549_cell_line_imputed.h5ad | 294 |
| abstract_inverted_index.k562_cell_line_imputed.h5ad | 302 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |