Mutual-cognition for proactive human–robot collaboration: A mixed reality-enabled visual reasoning-based method Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/24725854.2024.2313647
Human-Robot Collaboration (HRC) is key to achieving the flexible automation required by the mass personalization trend, especially towards human-centric intelligent manufacturing. Nevertheless, existing HRC systems suffer from poor task understanding and poor ergonomic satisfaction, which impede empathetic teamwork skills in task execution. To overcome the bottleneck, a Mixed Reality (MR) and visual reasoning-based method is proposed in this research, providing mutual-cognitive task assignment for human and robotic agents’ operations. Firstly, an MR-enabled mutual-cognitive HRC architecture is proposed, with the characteristic of monitoring Digital Twins states, reasoning co-working strategies, and providing cognitive services. Secondly, a visual reasoning approach is introduced, which learns scene interpretation from the visual perception of each agent’s actions and environmental changes to make task planning strategies satisfying human–robot operation needs. Lastly, a safe, ergonomic, and proactive robot motion planning algorithm is proposed to let a robot execute generated co-working strategies, while a human operator is supported with intuitive task operation guidance in the MR environment, achieving empathetic collaboration. Through a demonstration of a disassembly task of aging Electric Vehicle Batteries, the experimental result facilitates cognitive intelligence in Proactive HRC for flexible automation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/24725854.2024.2313647
- OA Status
- hybrid
- Cited By
- 20
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391556479
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391556479Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/24725854.2024.2313647Digital Object Identifier
- Title
-
Mutual-cognition for proactive human–robot collaboration: A mixed reality-enabled visual reasoning-based methodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-05Full publication date if available
- Authors
-
Shufei Li, Yingchao You, Pai Zheng, Xi Vincent Wang, Lihui WangList of authors in order
- Landing page
-
https://doi.org/10.1080/24725854.2024.2313647Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/24725854.2024.2313647Direct OA link when available
- Concepts
-
Human–computer interaction, Cognition, Computer science, Human–robot interaction, Mixed reality, Robot, Augmented reality, Cognitive science, Psychology, Artificial intelligence, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391556479 |
|---|---|
| doi | https://doi.org/10.1080/24725854.2024.2313647 |
| ids.doi | https://doi.org/10.1080/24725854.2024.2313647 |
| ids.openalex | https://openalex.org/W4391556479 |
| fwci | 28.35225149 |
| type | article |
| title | Mutual-cognition for proactive human–robot collaboration: A mixed reality-enabled visual reasoning-based method |
| awards[0].id | https://openalex.org/G4061210395 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52005424 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 56 |
| biblio.last_page | 1111 |
| biblio.first_page | 1099 |
| topics[0].id | https://openalex.org/T10525 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9948999881744385 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3207 |
| topics[0].subfield.display_name | Social Psychology |
| topics[0].display_name | Human-Automation Interaction and Safety |
| topics[1].id | https://openalex.org/T10653 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9921000003814697 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Robot Manipulation and Learning |
| topics[2].id | https://openalex.org/T11687 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Teleoperation and Haptic Systems |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107457646 |
| concepts[0].level | 1 |
| concepts[0].score | 0.634706974029541 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[0].display_name | Human–computer interaction |
| concepts[1].id | https://openalex.org/C169900460 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5765168070793152 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[1].display_name | Cognition |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5342145562171936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C145460709 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4850110709667206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q859951 |
| concepts[3].display_name | Human–robot interaction |
| concepts[4].id | https://openalex.org/C206776904 |
| concepts[4].level | 3 |
| concepts[4].score | 0.46788376569747925 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1758389 |
| concepts[4].display_name | Mixed reality |
| concepts[5].id | https://openalex.org/C90509273 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4515293836593628 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[5].display_name | Robot |
| concepts[6].id | https://openalex.org/C153715457 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4282992482185364 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q254183 |
| concepts[6].display_name | Augmented reality |
| concepts[7].id | https://openalex.org/C188147891 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3957844376564026 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[7].display_name | Cognitive science |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3090982437133789 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29009783267974854 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12157225608825684 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[0].score | 0.634706974029541 |
| keywords[0].display_name | Human–computer interaction |
| keywords[1].id | https://openalex.org/keywords/cognition |
| keywords[1].score | 0.5765168070793152 |
| keywords[1].display_name | Cognition |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5342145562171936 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/human–robot-interaction |
| keywords[3].score | 0.4850110709667206 |
| keywords[3].display_name | Human–robot interaction |
| keywords[4].id | https://openalex.org/keywords/mixed-reality |
| keywords[4].score | 0.46788376569747925 |
| keywords[4].display_name | Mixed reality |
| keywords[5].id | https://openalex.org/keywords/robot |
| keywords[5].score | 0.4515293836593628 |
| keywords[5].display_name | Robot |
| keywords[6].id | https://openalex.org/keywords/augmented-reality |
| keywords[6].score | 0.4282992482185364 |
| keywords[6].display_name | Augmented reality |
| keywords[7].id | https://openalex.org/keywords/cognitive-science |
| keywords[7].score | 0.3957844376564026 |
| keywords[7].display_name | Cognitive science |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.3090982437133789 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.29009783267974854 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.12157225608825684 |
| keywords[10].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.1080/24725854.2024.2313647 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210225672 |
| locations[0].source.issn | 2472-5854, 2472-5862 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2472-5854 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IISE Transactions |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IISE Transactions |
| locations[0].landing_page_url | https://doi.org/10.1080/24725854.2024.2313647 |
| locations[1].id | pmh:oai:https://orca.cardiff.ac.uk:166836 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400871 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Spectrum Research Repository (Concordia University) |
| locations[1].source.host_organization | https://openalex.org/I60158472 |
| locations[1].source.host_organization_name | Concordia University |
| locations[1].source.host_organization_lineage | https://openalex.org/I60158472 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:RePEc:taf:uiiexx:v:56:y:2024:i:10:p:1099-1111 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10.1080/24725854.2024.2313647 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058018789 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5684-6756 |
| authorships[0].author.display_name | Shufei Li |
| authorships[0].countries | HK, SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic, University, Hong Kong Special Administrative Region, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I86987016 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| authorships[0].institutions[0].id | https://openalex.org/I14243506 |
| authorships[0].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[0].institutions[1].id | https://openalex.org/I86987016 |
| authorships[0].institutions[1].ror | https://ror.org/026vcq606 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I86987016 |
| authorships[0].institutions[1].country_code | SE |
| authorships[0].institutions[1].display_name | KTH Royal Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shufei Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic, University, Hong Kong Special Administrative Region, China, Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| authorships[1].author.id | https://openalex.org/A5021969903 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4193-3304 |
| authorships[1].author.display_name | Yingchao You |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79510175 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering, Cardiff University, UK |
| authorships[1].institutions[0].id | https://openalex.org/I79510175 |
| authorships[1].institutions[0].ror | https://ror.org/03kk7td41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79510175 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Cardiff University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingchao You |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering, Cardiff University, UK |
| authorships[2].author.id | https://openalex.org/A5079101040 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2329-8634 |
| authorships[2].author.display_name | Pai Zheng |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic, University, Hong Kong Special Administrative Region, China |
| authorships[2].institutions[0].id | https://openalex.org/I14243506 |
| authorships[2].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pai Zheng |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic, University, Hong Kong Special Administrative Region, China |
| authorships[3].author.id | https://openalex.org/A5062473662 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9694-0483 |
| authorships[3].author.display_name | Xi Vincent Wang |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I86987016 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| authorships[3].institutions[0].id | https://openalex.org/I86987016 |
| authorships[3].institutions[0].ror | https://ror.org/026vcq606 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I86987016 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | KTH Royal Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xi Vincent Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| authorships[4].author.id | https://openalex.org/A5100434965 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8679-8049 |
| authorships[4].author.display_name | Lihui Wang |
| authorships[4].countries | SE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I86987016 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| authorships[4].institutions[0].id | https://openalex.org/I86987016 |
| authorships[4].institutions[0].ror | https://ror.org/026vcq606 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I86987016 |
| authorships[4].institutions[0].country_code | SE |
| authorships[4].institutions[0].display_name | KTH Royal Institute of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lihui Wang |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/24725854.2024.2313647 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mutual-cognition for proactive human–robot collaboration: A mixed reality-enabled visual reasoning-based method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10525 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9948999881744385 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3207 |
| primary_topic.subfield.display_name | Social Psychology |
| primary_topic.display_name | Human-Automation Interaction and Safety |
| related_works | https://openalex.org/W4315498436, https://openalex.org/W4236000927, https://openalex.org/W2394424449, https://openalex.org/W2624249381, https://openalex.org/W1539903462, https://openalex.org/W2915381807, https://openalex.org/W4229456911, https://openalex.org/W9783058, https://openalex.org/W2905138457, https://openalex.org/W4287179229 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1080/24725854.2024.2313647 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210225672 |
| best_oa_location.source.issn | 2472-5854, 2472-5862 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2472-5854 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IISE Transactions |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IISE Transactions |
| best_oa_location.landing_page_url | https://doi.org/10.1080/24725854.2024.2313647 |
| primary_location.id | doi:10.1080/24725854.2024.2313647 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210225672 |
| primary_location.source.issn | 2472-5854, 2472-5862 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2472-5854 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IISE Transactions |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IISE Transactions |
| primary_location.landing_page_url | https://doi.org/10.1080/24725854.2024.2313647 |
| publication_date | 2024-02-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2963349093, https://openalex.org/W2765218414, https://openalex.org/W3049106855, https://openalex.org/W2810638738, https://openalex.org/W2015398951, https://openalex.org/W3035399403, https://openalex.org/W3047616003, https://openalex.org/W4281898708, https://openalex.org/W2999910018, https://openalex.org/W2991403870, https://openalex.org/W4210544759, https://openalex.org/W3047619549, https://openalex.org/W2954808673, https://openalex.org/W3217651858, https://openalex.org/W3183211010, https://openalex.org/W4313453017, https://openalex.org/W4366607791, https://openalex.org/W4285265289, https://openalex.org/W3034213471, https://openalex.org/W2946370926, https://openalex.org/W2024097232, https://openalex.org/W2079641210, https://openalex.org/W2964481574, https://openalex.org/W2912218290, https://openalex.org/W2954453598, https://openalex.org/W2969679616, https://openalex.org/W2963938081, https://openalex.org/W3005870763, https://openalex.org/W3119523940, https://openalex.org/W3207626483, https://openalex.org/W2492168543, https://openalex.org/W4280567426, https://openalex.org/W3037609644, https://openalex.org/W4200449846, https://openalex.org/W3024383962, https://openalex.org/W3024513037, https://openalex.org/W3205172848, https://openalex.org/W2886970679, https://openalex.org/W3029472756, https://openalex.org/W3144040705, https://openalex.org/W4224884377 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 46, 93, 124, 137, 144, 162, 165 |
| abstract_inverted_index.MR | 156 |
| abstract_inverted_index.To | 42 |
| abstract_inverted_index.an | 70 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 39, 56, 154, 179 |
| abstract_inverted_index.is | 3, 54, 75, 97, 133, 147 |
| abstract_inverted_index.of | 80, 107, 164, 168 |
| abstract_inverted_index.to | 5, 114, 135 |
| abstract_inverted_index.HRC | 23, 73, 181 |
| abstract_inverted_index.and | 30, 50, 65, 88, 111, 127 |
| abstract_inverted_index.for | 63, 182 |
| abstract_inverted_index.key | 4 |
| abstract_inverted_index.let | 136 |
| abstract_inverted_index.the | 7, 12, 44, 78, 104, 155, 173 |
| abstract_inverted_index.(MR) | 49 |
| abstract_inverted_index.each | 108 |
| abstract_inverted_index.from | 26, 103 |
| abstract_inverted_index.make | 115 |
| abstract_inverted_index.mass | 13 |
| abstract_inverted_index.poor | 27, 31 |
| abstract_inverted_index.task | 28, 40, 61, 116, 151, 167 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.with | 77, 149 |
| abstract_inverted_index.(HRC) | 2 |
| abstract_inverted_index.Mixed | 47 |
| abstract_inverted_index.Twins | 83 |
| abstract_inverted_index.aging | 169 |
| abstract_inverted_index.human | 64, 145 |
| abstract_inverted_index.robot | 129, 138 |
| abstract_inverted_index.safe, | 125 |
| abstract_inverted_index.scene | 101 |
| abstract_inverted_index.which | 34, 99 |
| abstract_inverted_index.while | 143 |
| abstract_inverted_index.impede | 35 |
| abstract_inverted_index.learns | 100 |
| abstract_inverted_index.method | 53 |
| abstract_inverted_index.motion | 130 |
| abstract_inverted_index.needs. | 122 |
| abstract_inverted_index.result | 175 |
| abstract_inverted_index.skills | 38 |
| abstract_inverted_index.suffer | 25 |
| abstract_inverted_index.trend, | 15 |
| abstract_inverted_index.visual | 51, 94, 105 |
| abstract_inverted_index.Digital | 82 |
| abstract_inverted_index.Lastly, | 123 |
| abstract_inverted_index.Reality | 48 |
| abstract_inverted_index.Through | 161 |
| abstract_inverted_index.Vehicle | 171 |
| abstract_inverted_index.actions | 110 |
| abstract_inverted_index.changes | 113 |
| abstract_inverted_index.execute | 139 |
| abstract_inverted_index.robotic | 66 |
| abstract_inverted_index.states, | 84 |
| abstract_inverted_index.systems | 24 |
| abstract_inverted_index.towards | 17 |
| abstract_inverted_index.Electric | 170 |
| abstract_inverted_index.Firstly, | 69 |
| abstract_inverted_index.approach | 96 |
| abstract_inverted_index.existing | 22 |
| abstract_inverted_index.flexible | 8, 183 |
| abstract_inverted_index.guidance | 153 |
| abstract_inverted_index.operator | 146 |
| abstract_inverted_index.overcome | 43 |
| abstract_inverted_index.planning | 117, 131 |
| abstract_inverted_index.proposed | 55, 134 |
| abstract_inverted_index.required | 10 |
| abstract_inverted_index.teamwork | 37 |
| abstract_inverted_index.Proactive | 180 |
| abstract_inverted_index.Secondly, | 92 |
| abstract_inverted_index.achieving | 6, 158 |
| abstract_inverted_index.agents’ | 67 |
| abstract_inverted_index.agent’s | 109 |
| abstract_inverted_index.algorithm | 132 |
| abstract_inverted_index.cognitive | 90, 177 |
| abstract_inverted_index.ergonomic | 32 |
| abstract_inverted_index.generated | 140 |
| abstract_inverted_index.intuitive | 150 |
| abstract_inverted_index.operation | 121, 152 |
| abstract_inverted_index.proactive | 128 |
| abstract_inverted_index.proposed, | 76 |
| abstract_inverted_index.providing | 59, 89 |
| abstract_inverted_index.reasoning | 85, 95 |
| abstract_inverted_index.research, | 58 |
| abstract_inverted_index.services. | 91 |
| abstract_inverted_index.supported | 148 |
| abstract_inverted_index.Batteries, | 172 |
| abstract_inverted_index.MR-enabled | 71 |
| abstract_inverted_index.assignment | 62 |
| abstract_inverted_index.automation | 9 |
| abstract_inverted_index.co-working | 86, 141 |
| abstract_inverted_index.empathetic | 36, 159 |
| abstract_inverted_index.ergonomic, | 126 |
| abstract_inverted_index.especially | 16 |
| abstract_inverted_index.execution. | 41 |
| abstract_inverted_index.monitoring | 81 |
| abstract_inverted_index.perception | 106 |
| abstract_inverted_index.satisfying | 119 |
| abstract_inverted_index.strategies | 118 |
| abstract_inverted_index.Human-Robot | 0 |
| abstract_inverted_index.automation. | 184 |
| abstract_inverted_index.bottleneck, | 45 |
| abstract_inverted_index.disassembly | 166 |
| abstract_inverted_index.facilitates | 176 |
| abstract_inverted_index.intelligent | 19 |
| abstract_inverted_index.introduced, | 98 |
| abstract_inverted_index.operations. | 68 |
| abstract_inverted_index.strategies, | 87, 142 |
| abstract_inverted_index.architecture | 74 |
| abstract_inverted_index.environment, | 157 |
| abstract_inverted_index.experimental | 174 |
| abstract_inverted_index.intelligence | 178 |
| abstract_inverted_index.Collaboration | 1 |
| abstract_inverted_index.Nevertheless, | 21 |
| abstract_inverted_index.demonstration | 163 |
| abstract_inverted_index.environmental | 112 |
| abstract_inverted_index.human-centric | 18 |
| abstract_inverted_index.human–robot | 120 |
| abstract_inverted_index.satisfaction, | 33 |
| abstract_inverted_index.understanding | 29 |
| abstract_inverted_index.characteristic | 79 |
| abstract_inverted_index.collaboration. | 160 |
| abstract_inverted_index.interpretation | 102 |
| abstract_inverted_index.manufacturing. | 20 |
| abstract_inverted_index.personalization | 14 |
| abstract_inverted_index.reasoning-based | 52 |
| abstract_inverted_index.mutual-cognitive | 60, 72 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5079101040, https://openalex.org/A5100434965 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I14243506, https://openalex.org/I86987016 |
| citation_normalized_percentile.value | 0.99441811 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |