MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.07519
The application of methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3D GS) have steadily gained popularity in the field of 3D object segmentation in static scenes. These approaches demonstrate efficacy in a range of 3D scene understanding and editing tasks. Nevertheless, the 4D object segmentation of dynamic scenes remains an underexplored field due to the absence of a sufficiently extensive and accurately labelled multi-view video dataset. In this paper, we present MUVOD, a new multi-view video dataset for training and evaluating object segmentation in reconstructed real-world scenarios. The 17 selected scenes, describing various indoor or outdoor activities, are collected from different sources of datasets originating from various types of camera rigs. Each scene contains a minimum of 9 views and a maximum of 46 views. We provide 7830 RGB images (30 frames per video) with their corresponding segmentation mask in 4D motion, meaning that any object of interest in the scene could be tracked across temporal frames of a given view or across different views belonging to the same camera rig. This dataset, which contains 459 instances of 73 categories, is intended as a basic benchmark for the evaluation of multi-view video segmentation methods. We also present an evaluation metric and a baseline segmentation approach to encourage and evaluate progress in this evolving field. Additionally, we propose a new benchmark for 3D object segmentation task with a subset of annotated multi-view images selected from our MUVOD dataset. This subset contains 50 objects of different conditions in different scenarios, providing a more comprehensive analysis of state-of-the-art 3D object segmentation methods. Our proposed MUVOD dataset is available at https://volumetric-repository.labs.b-com.com/#/muvod.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.07519
- https://arxiv.org/pdf/2507.07519
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416307810
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416307810Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.07519Digital Object Identifier
- Title
-
MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-10Full publication date if available
- Authors
-
Bangning Wei, Joshua Maraval, Meriem Outtas, Kidiyo Kpalma, Nicolas Ramin, Lu ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.07519Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.07519Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.07519Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416307810 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.07519 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.07519 |
| ids.openalex | https://openalex.org/W4416307810 |
| fwci | |
| type | preprint |
| title | MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.07519 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.07519 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.07519 |
| locations[1].id | doi:10.48550/arxiv.2507.07519 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.07519 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109750665 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2308-9920 |
| authorships[0].author.display_name | Bangning Wei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei, Bangning |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104939511 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Joshua Maraval |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maraval, Joshua |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041258744 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0918-1990 |
| authorships[2].author.display_name | Meriem Outtas |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Outtas, Meriem |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5029409871 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8179-6415 |
| authorships[3].author.display_name | Kidiyo Kpalma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kpalma, Kidiyo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5092705442 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nicolas Ramin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ramin, Nicolas |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035359666 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8859-5453 |
| authorships[5].author.display_name | Lu Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Lu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.07519 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:52:38.981891 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.07519 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.07519 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.07519 |
| primary_location.id | pmh:oai:arXiv.org:2507.07519 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.07519 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.07519 |
| publication_date | 2025-07-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.9 | 121 |
| abstract_inverted_index.a | 35, 61, 76, 118, 124, 162, 187, 205, 221, 230, 253 |
| abstract_inverted_index.17 | 92 |
| abstract_inverted_index.3D | 11, 24, 38, 225, 259 |
| abstract_inverted_index.46 | 127 |
| abstract_inverted_index.4D | 46, 144 |
| abstract_inverted_index.50 | 244 |
| abstract_inverted_index.73 | 182 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.We | 129, 198 |
| abstract_inverted_index.an | 53, 201 |
| abstract_inverted_index.as | 186 |
| abstract_inverted_index.at | 269 |
| abstract_inverted_index.be | 156 |
| abstract_inverted_index.in | 20, 27, 34, 87, 143, 152, 214, 249 |
| abstract_inverted_index.is | 184, 267 |
| abstract_inverted_index.of | 2, 23, 37, 49, 60, 106, 112, 120, 126, 150, 161, 181, 193, 232, 246, 257 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.or | 98, 165 |
| abstract_inverted_index.to | 57, 170, 209 |
| abstract_inverted_index.we | 73, 219 |
| abstract_inverted_index.(30 | 134 |
| abstract_inverted_index.(3D | 14 |
| abstract_inverted_index.459 | 179 |
| abstract_inverted_index.GS) | 15 |
| abstract_inverted_index.Our | 263 |
| abstract_inverted_index.RGB | 132 |
| abstract_inverted_index.The | 0, 91 |
| abstract_inverted_index.and | 10, 41, 64, 83, 123, 204, 211 |
| abstract_inverted_index.any | 148 |
| abstract_inverted_index.are | 101 |
| abstract_inverted_index.due | 56 |
| abstract_inverted_index.for | 81, 190, 224 |
| abstract_inverted_index.new | 77, 222 |
| abstract_inverted_index.our | 238 |
| abstract_inverted_index.per | 136 |
| abstract_inverted_index.the | 21, 45, 58, 153, 171, 191 |
| abstract_inverted_index.7830 | 131 |
| abstract_inverted_index.Each | 115 |
| abstract_inverted_index.This | 175, 241 |
| abstract_inverted_index.also | 199 |
| abstract_inverted_index.from | 103, 109, 237 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.mask | 142 |
| abstract_inverted_index.more | 254 |
| abstract_inverted_index.rig. | 174 |
| abstract_inverted_index.same | 172 |
| abstract_inverted_index.task | 228 |
| abstract_inverted_index.that | 147 |
| abstract_inverted_index.this | 71, 215 |
| abstract_inverted_index.view | 164 |
| abstract_inverted_index.with | 138, 229 |
| abstract_inverted_index.MUVOD | 239, 265 |
| abstract_inverted_index.These | 30 |
| abstract_inverted_index.based | 4 |
| abstract_inverted_index.basic | 188 |
| abstract_inverted_index.could | 155 |
| abstract_inverted_index.field | 22, 55 |
| abstract_inverted_index.given | 163 |
| abstract_inverted_index.range | 36 |
| abstract_inverted_index.rigs. | 114 |
| abstract_inverted_index.scene | 39, 116, 154 |
| abstract_inverted_index.their | 139 |
| abstract_inverted_index.types | 111 |
| abstract_inverted_index.video | 68, 79, 195 |
| abstract_inverted_index.views | 122, 168 |
| abstract_inverted_index.which | 177 |
| abstract_inverted_index.(NeRF) | 9 |
| abstract_inverted_index.Fields | 8 |
| abstract_inverted_index.MUVOD, | 75 |
| abstract_inverted_index.Neural | 6 |
| abstract_inverted_index.across | 158, 166 |
| abstract_inverted_index.camera | 113, 173 |
| abstract_inverted_index.field. | 217 |
| abstract_inverted_index.frames | 135, 160 |
| abstract_inverted_index.gained | 18 |
| abstract_inverted_index.images | 133, 235 |
| abstract_inverted_index.indoor | 97 |
| abstract_inverted_index.metric | 203 |
| abstract_inverted_index.object | 25, 47, 85, 149, 226, 260 |
| abstract_inverted_index.paper, | 72 |
| abstract_inverted_index.scenes | 51 |
| abstract_inverted_index.static | 28 |
| abstract_inverted_index.subset | 231, 242 |
| abstract_inverted_index.tasks. | 43 |
| abstract_inverted_index.video) | 137 |
| abstract_inverted_index.views. | 128 |
| abstract_inverted_index.absence | 59 |
| abstract_inverted_index.dataset | 80, 266 |
| abstract_inverted_index.dynamic | 50 |
| abstract_inverted_index.editing | 42 |
| abstract_inverted_index.maximum | 125 |
| abstract_inverted_index.meaning | 146 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.minimum | 119 |
| abstract_inverted_index.motion, | 145 |
| abstract_inverted_index.objects | 245 |
| abstract_inverted_index.outdoor | 99 |
| abstract_inverted_index.present | 74, 200 |
| abstract_inverted_index.propose | 220 |
| abstract_inverted_index.provide | 130 |
| abstract_inverted_index.remains | 52 |
| abstract_inverted_index.scenes, | 94 |
| abstract_inverted_index.scenes. | 29 |
| abstract_inverted_index.sources | 105 |
| abstract_inverted_index.tracked | 157 |
| abstract_inverted_index.various | 96, 110 |
| abstract_inverted_index.Gaussian | 12 |
| abstract_inverted_index.Radiance | 7 |
| abstract_inverted_index.analysis | 256 |
| abstract_inverted_index.approach | 208 |
| abstract_inverted_index.baseline | 206 |
| abstract_inverted_index.contains | 117, 178, 243 |
| abstract_inverted_index.dataset, | 176 |
| abstract_inverted_index.dataset. | 69, 240 |
| abstract_inverted_index.datasets | 107 |
| abstract_inverted_index.efficacy | 33 |
| abstract_inverted_index.evaluate | 212 |
| abstract_inverted_index.evolving | 216 |
| abstract_inverted_index.intended | 185 |
| abstract_inverted_index.interest | 151 |
| abstract_inverted_index.labelled | 66 |
| abstract_inverted_index.methods. | 197, 262 |
| abstract_inverted_index.progress | 213 |
| abstract_inverted_index.proposed | 264 |
| abstract_inverted_index.selected | 93, 236 |
| abstract_inverted_index.steadily | 17 |
| abstract_inverted_index.temporal | 159 |
| abstract_inverted_index.training | 82 |
| abstract_inverted_index.Splatting | 13 |
| abstract_inverted_index.annotated | 233 |
| abstract_inverted_index.available | 268 |
| abstract_inverted_index.belonging | 169 |
| abstract_inverted_index.benchmark | 189, 223 |
| abstract_inverted_index.collected | 102 |
| abstract_inverted_index.different | 104, 167, 247, 250 |
| abstract_inverted_index.encourage | 210 |
| abstract_inverted_index.extensive | 63 |
| abstract_inverted_index.instances | 180 |
| abstract_inverted_index.providing | 252 |
| abstract_inverted_index.accurately | 65 |
| abstract_inverted_index.approaches | 31 |
| abstract_inverted_index.conditions | 248 |
| abstract_inverted_index.describing | 95 |
| abstract_inverted_index.evaluating | 84 |
| abstract_inverted_index.evaluation | 192, 202 |
| abstract_inverted_index.multi-view | 67, 78, 194, 234 |
| abstract_inverted_index.popularity | 19 |
| abstract_inverted_index.real-world | 89 |
| abstract_inverted_index.scenarios, | 251 |
| abstract_inverted_index.scenarios. | 90 |
| abstract_inverted_index.activities, | 100 |
| abstract_inverted_index.application | 1 |
| abstract_inverted_index.categories, | 183 |
| abstract_inverted_index.demonstrate | 32 |
| abstract_inverted_index.originating | 108 |
| abstract_inverted_index.segmentation | 26, 48, 86, 141, 196, 207, 227, 261 |
| abstract_inverted_index.sufficiently | 62 |
| abstract_inverted_index.Additionally, | 218 |
| abstract_inverted_index.Nevertheless, | 44 |
| abstract_inverted_index.comprehensive | 255 |
| abstract_inverted_index.corresponding | 140 |
| abstract_inverted_index.reconstructed | 88 |
| abstract_inverted_index.underexplored | 54 |
| abstract_inverted_index.understanding | 40 |
| abstract_inverted_index.state-of-the-art | 258 |
| abstract_inverted_index.https://volumetric-repository.labs.b-com.com/#/muvod. | 270 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |