$n$-Reference Transfer Learning for Saliency Prediction Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2007.05104
Benefiting from deep learning research and large-scale datasets, saliency prediction has achieved significant success in the past decade. However, it still remains challenging to predict saliency maps on images in new domains that lack sufficient data for data-hungry models. To solve this problem, we propose a few-shot transfer learning paradigm for saliency prediction, which enables efficient transfer of knowledge learned from the existing large-scale saliency datasets to a target domain with limited labeled examples. Specifically, very few target domain examples are used as the reference to train a model with a source domain dataset such that the training process can converge to a local minimum in favor of the target domain. Then, the learned model is further fine-tuned with the reference. The proposed framework is gradient-based and model-agnostic. We conduct comprehensive experiments and ablation study on various source domain and target domain pairs. The results show that the proposed framework achieves a significant performance improvement. The code is publicly available at \url{https://github.com/luoyan407/n-reference}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2007.05104
- https://arxiv.org/pdf/2007.05104
- OA Status
- green
- Cited By
- 1
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3041094932
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3041094932Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2007.05104Digital Object Identifier
- Title
-
$n$-Reference Transfer Learning for Saliency PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-09Full publication date if available
- Authors
-
Yan Luo, Yongkang Wong, Mohan Kankanhalli, Qi ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2007.05104Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2007.05104Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2007.05104Direct OA link when available
- Concepts
-
Computer science, Domain (mathematical analysis), Artificial intelligence, Transfer of learning, Code (set theory), Process (computing), Source code, Machine learning, Scale (ratio), Labeled data, Pattern recognition (psychology), Data mining, Mathematics, Operating system, Mathematical analysis, Physics, Quantum mechanics, Set (abstract data type), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3041094932 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2007.05104 |
| ids.doi | https://doi.org/10.48550/arxiv.2007.05104 |
| ids.mag | 3041094932 |
| ids.openalex | https://openalex.org/W3041094932 |
| fwci | |
| type | preprint |
| title | $n$-Reference Transfer Learning for Saliency Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9473999738693237 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9456999897956848 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8305450081825256 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C36503486 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7469185590744019 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[1].display_name | Domain (mathematical analysis) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6902174353599548 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C150899416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.656264066696167 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[3].display_name | Transfer of learning |
| concepts[4].id | https://openalex.org/C2776760102 |
| concepts[4].level | 3 |
| concepts[4].score | 0.606721043586731 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[4].display_name | Code (set theory) |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5691575407981873 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C43126263 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5591800212860107 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[6].display_name | Source code |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5484016537666321 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2778755073 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45462846755981445 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[8].display_name | Scale (ratio) |
| concepts[9].id | https://openalex.org/C2776145971 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4479776620864868 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[9].display_name | Labeled data |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3919447064399719 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35530421137809753 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.05450081825256348 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8305450081825256 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/domain |
| keywords[1].score | 0.7469185590744019 |
| keywords[1].display_name | Domain (mathematical analysis) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6902174353599548 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[3].score | 0.656264066696167 |
| keywords[3].display_name | Transfer of learning |
| keywords[4].id | https://openalex.org/keywords/code |
| keywords[4].score | 0.606721043586731 |
| keywords[4].display_name | Code (set theory) |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5691575407981873 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/source-code |
| keywords[6].score | 0.5591800212860107 |
| keywords[6].display_name | Source code |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5484016537666321 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/scale |
| keywords[8].score | 0.45462846755981445 |
| keywords[8].display_name | Scale (ratio) |
| keywords[9].id | https://openalex.org/keywords/labeled-data |
| keywords[9].score | 0.4479776620864868 |
| keywords[9].display_name | Labeled data |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3919447064399719 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.35530421137809753 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.05450081825256348 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2007.05104 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2007.05104 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2007.05104 |
| locations[1].id | doi:10.48550/arxiv.2007.05104 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2007.05104 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5055879357 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5135-0316 |
| authorships[0].author.display_name | Yan Luo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2800403580 |
| authorships[0].affiliations[0].raw_affiliation_string | university of minnesota; |
| authorships[0].institutions[0].id | https://openalex.org/I2800403580 |
| authorships[0].institutions[0].ror | https://ror.org/03grvy078 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800403580 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Minnesota System |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan Luo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | university of minnesota; |
| authorships[1].author.id | https://openalex.org/A5020006712 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1239-4428 |
| authorships[1].author.display_name | Yongkang Wong |
| authorships[1].countries | SG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[1].affiliations[0].raw_affiliation_string | National University of Singapore, |
| authorships[1].institutions[0].id | https://openalex.org/I165932596 |
| authorships[1].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[1].institutions[0].country_code | SG |
| authorships[1].institutions[0].display_name | National University of Singapore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yongkang Wong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National University of Singapore, |
| authorships[2].author.id | https://openalex.org/A5016415049 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4846-2015 |
| authorships[2].author.display_name | Mohan Kankanhalli |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[2].affiliations[0].raw_affiliation_string | National University of Singapore, |
| authorships[2].institutions[0].id | https://openalex.org/I165932596 |
| authorships[2].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | National University of Singapore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohan S. Kankanhalli |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National University of Singapore, |
| authorships[3].author.id | https://openalex.org/A5047419128 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3054-8934 |
| authorships[3].author.display_name | Qi Zhao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800403580 |
| authorships[3].affiliations[0].raw_affiliation_string | university of minnesota; |
| authorships[3].institutions[0].id | https://openalex.org/I2800403580 |
| authorships[3].institutions[0].ror | https://ror.org/03grvy078 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800403580 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Minnesota System |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Qi Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | university of minnesota; |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2007.05104 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | $n$-Reference Transfer Learning for Saliency Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W3201126466, https://openalex.org/W4282827391, https://openalex.org/W3165580226, https://openalex.org/W4386828785, https://openalex.org/W3081644756, https://openalex.org/W4287241967, https://openalex.org/W3193920202, https://openalex.org/W3144173820, https://openalex.org/W4318813552, https://openalex.org/W2576964996 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2007.05104 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2007.05104 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2007.05104 |
| primary_location.id | pmh:oai:arXiv.org:2007.05104 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2007.05104 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2007.05104 |
| publication_date | 2020-07-09 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2964105864, https://openalex.org/W2994762555, https://openalex.org/W2120708938, https://openalex.org/W284368147, https://openalex.org/W2963460174, https://openalex.org/W1510835000, https://openalex.org/W2964121744, https://openalex.org/W2194775991, https://openalex.org/W2129865252, https://openalex.org/W2963828885, https://openalex.org/W2963503775, https://openalex.org/W2583180462, https://openalex.org/W2070645165, https://openalex.org/W2964114039, https://openalex.org/W2754566651, https://openalex.org/W2756073160, https://openalex.org/W2037328649, https://openalex.org/W2163605009, https://openalex.org/W3101840568, https://openalex.org/W2742318416, https://openalex.org/W2090051270, https://openalex.org/W2106848651, https://openalex.org/W2980565715, https://openalex.org/W2032007016, https://openalex.org/W2401823607, https://openalex.org/W2082694050, https://openalex.org/W1517086206, https://openalex.org/W2963070905, https://openalex.org/W2963446712, https://openalex.org/W2591924527, https://openalex.org/W2979689312, https://openalex.org/W2115733720, https://openalex.org/W2964145162, https://openalex.org/W2964186069, https://openalex.org/W2115403315, https://openalex.org/W2194321275, https://openalex.org/W2295582178, https://openalex.org/W2138046011, https://openalex.org/W2135957164, https://openalex.org/W2968498519, https://openalex.org/W2963341924, https://openalex.org/W3025689158, https://openalex.org/W2911524746, https://openalex.org/W2128272608, https://openalex.org/W2549139847, https://openalex.org/W1944672, https://openalex.org/W2035652042, https://openalex.org/W2055600015, https://openalex.org/W2591673470, https://openalex.org/W1934890906, https://openalex.org/W2899771611 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 45, 67, 87, 90, 102, 151 |
| abstract_inverted_index.To | 39 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.at | 160 |
| abstract_inverted_index.in | 14, 29, 105 |
| abstract_inverted_index.is | 115, 124, 157 |
| abstract_inverted_index.it | 19 |
| abstract_inverted_index.of | 57, 107 |
| abstract_inverted_index.on | 27, 135 |
| abstract_inverted_index.to | 23, 66, 85, 101 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.The | 121, 143, 155 |
| abstract_inverted_index.and | 5, 126, 132, 139 |
| abstract_inverted_index.are | 80 |
| abstract_inverted_index.can | 99 |
| abstract_inverted_index.few | 76 |
| abstract_inverted_index.for | 36, 50 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.new | 30 |
| abstract_inverted_index.the | 15, 61, 83, 96, 108, 112, 119, 147 |
| abstract_inverted_index.code | 156 |
| abstract_inverted_index.data | 35 |
| abstract_inverted_index.deep | 2 |
| abstract_inverted_index.from | 1, 60 |
| abstract_inverted_index.lack | 33 |
| abstract_inverted_index.maps | 26 |
| abstract_inverted_index.past | 16 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.such | 94 |
| abstract_inverted_index.that | 32, 95, 146 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.used | 81 |
| abstract_inverted_index.very | 75 |
| abstract_inverted_index.with | 70, 89, 118 |
| abstract_inverted_index.Then, | 111 |
| abstract_inverted_index.favor | 106 |
| abstract_inverted_index.local | 103 |
| abstract_inverted_index.model | 88, 114 |
| abstract_inverted_index.solve | 40 |
| abstract_inverted_index.still | 20 |
| abstract_inverted_index.study | 134 |
| abstract_inverted_index.train | 86 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.domain | 69, 78, 92, 138, 141 |
| abstract_inverted_index.images | 28 |
| abstract_inverted_index.pairs. | 142 |
| abstract_inverted_index.source | 91, 137 |
| abstract_inverted_index.target | 68, 77, 109, 140 |
| abstract_inverted_index.conduct | 129 |
| abstract_inverted_index.dataset | 93 |
| abstract_inverted_index.decade. | 17 |
| abstract_inverted_index.domain. | 110 |
| abstract_inverted_index.domains | 31 |
| abstract_inverted_index.enables | 54 |
| abstract_inverted_index.further | 116 |
| abstract_inverted_index.labeled | 72 |
| abstract_inverted_index.learned | 59, 113 |
| abstract_inverted_index.limited | 71 |
| abstract_inverted_index.minimum | 104 |
| abstract_inverted_index.models. | 38 |
| abstract_inverted_index.predict | 24 |
| abstract_inverted_index.process | 98 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.remains | 21 |
| abstract_inverted_index.results | 144 |
| abstract_inverted_index.success | 13 |
| abstract_inverted_index.various | 136 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.ablation | 133 |
| abstract_inverted_index.achieved | 11 |
| abstract_inverted_index.achieves | 150 |
| abstract_inverted_index.converge | 100 |
| abstract_inverted_index.datasets | 65 |
| abstract_inverted_index.examples | 79 |
| abstract_inverted_index.existing | 62 |
| abstract_inverted_index.few-shot | 46 |
| abstract_inverted_index.learning | 3, 48 |
| abstract_inverted_index.paradigm | 49 |
| abstract_inverted_index.problem, | 42 |
| abstract_inverted_index.proposed | 122, 148 |
| abstract_inverted_index.publicly | 158 |
| abstract_inverted_index.research | 4 |
| abstract_inverted_index.saliency | 8, 25, 51, 64 |
| abstract_inverted_index.training | 97 |
| abstract_inverted_index.transfer | 47, 56 |
| abstract_inverted_index.available | 159 |
| abstract_inverted_index.datasets, | 7 |
| abstract_inverted_index.efficient | 55 |
| abstract_inverted_index.examples. | 73 |
| abstract_inverted_index.framework | 123, 149 |
| abstract_inverted_index.knowledge | 58 |
| abstract_inverted_index.reference | 84 |
| abstract_inverted_index.Benefiting | 0 |
| abstract_inverted_index.fine-tuned | 117 |
| abstract_inverted_index.prediction | 9 |
| abstract_inverted_index.reference. | 120 |
| abstract_inverted_index.sufficient | 34 |
| abstract_inverted_index.challenging | 22 |
| abstract_inverted_index.data-hungry | 37 |
| abstract_inverted_index.experiments | 131 |
| abstract_inverted_index.large-scale | 6, 63 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.prediction, | 52 |
| abstract_inverted_index.significant | 12, 152 |
| abstract_inverted_index.improvement. | 154 |
| abstract_inverted_index.Specifically, | 74 |
| abstract_inverted_index.comprehensive | 130 |
| abstract_inverted_index.gradient-based | 125 |
| abstract_inverted_index.model-agnostic. | 127 |
| abstract_inverted_index.\url{https://github.com/luoyan407/n-reference}. | 161 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |