Named entity recognition for Chinese judgment documents based on BiLSTM and CRF Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1186/s13640-020-00539-x
Chinese named entity recognition (CNER) in the judicial domain is an important and fundamental task in the analysis of judgment documents. However, only a few researches have been devoted to this task so far. For Chinese named entity recognition in judgment documents, we propose the use a bidirectional long-short-term memory (BiLSTM) model, which uses character vectors and sentence vectors trained by distributed memory model of paragraph vectors (PV-DM). The output of BiLSTM is used by conditional random field (CRF) to tag the input sequence. We also improved the Viterbi algorithm to increase the efficiency of the model by cutting the path with the lowest score. At last, a novel dataset with manual annotations is constructed. The experimental results on our corpus show that the proposed method is effective not only in reducing the computational time, but also in improving the effectiveness of named entity recognition in the judicial domain.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13640-020-00539-x
- https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-x
- OA Status
- gold
- Cited By
- 13
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3110578295
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3110578295Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13640-020-00539-xDigital Object Identifier
- Title
-
Named entity recognition for Chinese judgment documents based on BiLSTM and CRFWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-23Full publication date if available
- Authors
-
Wenming Huang, Dengrui Hu, Zhenrong Deng, Jian‐Yun NieList of authors in order
- Landing page
-
https://doi.org/10.1186/s13640-020-00539-xPublisher landing page
- PDF URL
-
https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-xDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-xDirect OA link when available
- Concepts
-
Computer science, Conditional random field, Named-entity recognition, Sentence, Task (project management), Artificial intelligence, Natural language processing, Paragraph, Domain (mathematical analysis), Field (mathematics), Hidden Markov model, Viterbi algorithm, Speech recognition, Pattern recognition (psychology), Mathematics, Pure mathematics, Economics, World Wide Web, Management, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1, 2022: 8Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3110578295 |
|---|---|
| doi | https://doi.org/10.1186/s13640-020-00539-x |
| ids.doi | https://doi.org/10.1186/s13640-020-00539-x |
| ids.mag | 3110578295 |
| ids.openalex | https://openalex.org/W3110578295 |
| fwci | 1.32173594 |
| type | article |
| title | Named entity recognition for Chinese judgment documents based on BiLSTM and CRF |
| awards[0].id | https://openalex.org/G711416380 |
| awards[0].funder_id | https://openalex.org/F4320322768 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2018GNSFAA138132 |
| awards[0].funder_display_name | Natural Science Foundation of Guangxi Province |
| awards[1].id | https://openalex.org/G8707237922 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61702129 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 2020 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9613000154495239 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322768 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Guangxi Province |
| is_xpac | False |
| apc_list.value | 1140 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1398 |
| apc_paid.value | 1140 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1398 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.807951807975769 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C152565575 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7622873783111572 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1124538 |
| concepts[1].display_name | Conditional random field |
| concepts[2].id | https://openalex.org/C2779135771 |
| concepts[2].level | 3 |
| concepts[2].score | 0.670372486114502 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q403574 |
| concepts[2].display_name | Named-entity recognition |
| concepts[3].id | https://openalex.org/C2777530160 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6631948947906494 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[3].display_name | Sentence |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6294592618942261 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6138206124305725 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5874865055084229 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C2777206241 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5588979125022888 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194431 |
| concepts[7].display_name | Paragraph |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49076351523399353 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C9652623 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45389389991760254 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[9].display_name | Field (mathematics) |
| concepts[10].id | https://openalex.org/C23224414 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45227792859077454 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[10].display_name | Hidden Markov model |
| concepts[11].id | https://openalex.org/C60582962 |
| concepts[11].level | 3 |
| concepts[11].score | 0.42001914978027344 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q83886 |
| concepts[11].display_name | Viterbi algorithm |
| concepts[12].id | https://openalex.org/C28490314 |
| concepts[12].level | 1 |
| concepts[12].score | 0.41755211353302 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[12].display_name | Speech recognition |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3214433789253235 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C136764020 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[17].display_name | World Wide Web |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.807951807975769 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/conditional-random-field |
| keywords[1].score | 0.7622873783111572 |
| keywords[1].display_name | Conditional random field |
| keywords[2].id | https://openalex.org/keywords/named-entity-recognition |
| keywords[2].score | 0.670372486114502 |
| keywords[2].display_name | Named-entity recognition |
| keywords[3].id | https://openalex.org/keywords/sentence |
| keywords[3].score | 0.6631948947906494 |
| keywords[3].display_name | Sentence |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.6294592618942261 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6138206124305725 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.5874865055084229 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/paragraph |
| keywords[7].score | 0.5588979125022888 |
| keywords[7].display_name | Paragraph |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.49076351523399353 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/field |
| keywords[9].score | 0.45389389991760254 |
| keywords[9].display_name | Field (mathematics) |
| keywords[10].id | https://openalex.org/keywords/hidden-markov-model |
| keywords[10].score | 0.45227792859077454 |
| keywords[10].display_name | Hidden Markov model |
| keywords[11].id | https://openalex.org/keywords/viterbi-algorithm |
| keywords[11].score | 0.42001914978027344 |
| keywords[11].display_name | Viterbi algorithm |
| keywords[12].id | https://openalex.org/keywords/speech-recognition |
| keywords[12].score | 0.41755211353302 |
| keywords[12].display_name | Speech recognition |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3214433789253235 |
| keywords[13].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1186/s13640-020-00539-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S153767265 |
| locations[0].source.issn | 1687-5176, 1687-5281 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1687-5176 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EURASIP Journal on Image and Video Processing |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-x |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EURASIP Journal on Image and Video Processing |
| locations[0].landing_page_url | https://doi.org/10.1186/s13640-020-00539-x |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102811342 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3367-3450 |
| authorships[0].author.display_name | Wenming Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China |
| authorships[0].institutions[0].id | https://openalex.org/I5343935 |
| authorships[0].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenming Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China |
| authorships[1].author.id | https://openalex.org/A5076858046 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dengrui Hu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China |
| authorships[1].institutions[0].id | https://openalex.org/I5343935 |
| authorships[1].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dengrui Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China |
| authorships[2].author.id | https://openalex.org/A5015789129 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5751-1843 |
| authorships[2].author.display_name | Zhenrong Deng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[2].affiliations[0].raw_affiliation_string | Guangxi Key Laboratory of Intelligent Processing of Computer Image and Graphics, Guilin University of Electronic Technology, Guilin, China |
| authorships[2].institutions[0].id | https://openalex.org/I5343935 |
| authorships[2].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhenrong Deng |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Guangxi Key Laboratory of Intelligent Processing of Computer Image and Graphics, Guilin University of Electronic Technology, Guilin, China |
| authorships[3].author.id | https://openalex.org/A5018977183 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1556-3335 |
| authorships[3].author.display_name | Jian‐Yun Nie |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Montreal, Montreal, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I70931966 |
| authorships[3].institutions[0].ror | https://ror.org/0161xgx34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I70931966 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Université de Montréal |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jianyun Nie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Montreal, Montreal, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-x |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Named entity recognition for Chinese judgment documents based on BiLSTM and CRF |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4250494529, https://openalex.org/W1964783010, https://openalex.org/W2399696375, https://openalex.org/W2136652457, https://openalex.org/W45206245, https://openalex.org/W2211396092, https://openalex.org/W2061834489, https://openalex.org/W2169849734, https://openalex.org/W3088215229, https://openalex.org/W2078793151 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1186/s13640-020-00539-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S153767265 |
| best_oa_location.source.issn | 1687-5176, 1687-5281 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1687-5176 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EURASIP Journal on Image and Video Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-x |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EURASIP Journal on Image and Video Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13640-020-00539-x |
| primary_location.id | doi:10.1186/s13640-020-00539-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S153767265 |
| primary_location.source.issn | 1687-5176, 1687-5281 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1687-5176 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EURASIP Journal on Image and Video Processing |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00539-x |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EURASIP Journal on Image and Video Processing |
| primary_location.landing_page_url | https://doi.org/10.1186/s13640-020-00539-x |
| publication_date | 2020-11-23 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2144578941, https://openalex.org/W2020278455, https://openalex.org/W2522417576, https://openalex.org/W2906525511, https://openalex.org/W2949626628, https://openalex.org/W2889115060, https://openalex.org/W2902973032, https://openalex.org/W3008297311, https://openalex.org/W3010250471, https://openalex.org/W2042188227, https://openalex.org/W2140016149, https://openalex.org/W2971098335, https://openalex.org/W6702248584, https://openalex.org/W3023618320, https://openalex.org/W2957763665, https://openalex.org/W2964035777, https://openalex.org/W1996035538, https://openalex.org/W1989484209, https://openalex.org/W2064675550, https://openalex.org/W2962904552, https://openalex.org/W618024573, https://openalex.org/W3103921574, https://openalex.org/W2612708909, https://openalex.org/W2296283641, https://openalex.org/W2963341956, https://openalex.org/W1982982698, https://openalex.org/W3140899690, https://openalex.org/W3098957435, https://openalex.org/W2219922309, https://openalex.org/W2913004713, https://openalex.org/W2962902328, https://openalex.org/W2979177436, https://openalex.org/W3098727690, https://openalex.org/W65845428, https://openalex.org/W589407005, https://openalex.org/W2949547296 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 24, 47, 108 |
| abstract_inverted_index.At | 106 |
| abstract_inverted_index.We | 85 |
| abstract_inverted_index.an | 11 |
| abstract_inverted_index.by | 61, 75, 98 |
| abstract_inverted_index.in | 6, 16, 40, 131, 138, 146 |
| abstract_inverted_index.is | 10, 73, 114, 127 |
| abstract_inverted_index.of | 19, 65, 71, 95, 142 |
| abstract_inverted_index.on | 119 |
| abstract_inverted_index.so | 33 |
| abstract_inverted_index.to | 30, 80, 91 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.For | 35 |
| abstract_inverted_index.The | 69, 116 |
| abstract_inverted_index.and | 13, 57 |
| abstract_inverted_index.but | 136 |
| abstract_inverted_index.few | 25 |
| abstract_inverted_index.not | 129 |
| abstract_inverted_index.our | 120 |
| abstract_inverted_index.tag | 81 |
| abstract_inverted_index.the | 7, 17, 45, 82, 88, 93, 96, 100, 103, 124, 133, 140, 147 |
| abstract_inverted_index.use | 46 |
| abstract_inverted_index.also | 86, 137 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.far. | 34 |
| abstract_inverted_index.have | 27 |
| abstract_inverted_index.only | 23, 130 |
| abstract_inverted_index.path | 101 |
| abstract_inverted_index.show | 122 |
| abstract_inverted_index.task | 15, 32 |
| abstract_inverted_index.that | 123 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.used | 74 |
| abstract_inverted_index.uses | 54 |
| abstract_inverted_index.with | 102, 111 |
| abstract_inverted_index.(CRF) | 79 |
| abstract_inverted_index.field | 78 |
| abstract_inverted_index.input | 83 |
| abstract_inverted_index.last, | 107 |
| abstract_inverted_index.model | 64, 97 |
| abstract_inverted_index.named | 2, 37, 143 |
| abstract_inverted_index.novel | 109 |
| abstract_inverted_index.time, | 135 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.(CNER) | 5 |
| abstract_inverted_index.BiLSTM | 72 |
| abstract_inverted_index.corpus | 121 |
| abstract_inverted_index.domain | 9 |
| abstract_inverted_index.entity | 3, 38, 144 |
| abstract_inverted_index.lowest | 104 |
| abstract_inverted_index.manual | 112 |
| abstract_inverted_index.memory | 50, 63 |
| abstract_inverted_index.method | 126 |
| abstract_inverted_index.model, | 52 |
| abstract_inverted_index.output | 70 |
| abstract_inverted_index.random | 77 |
| abstract_inverted_index.score. | 105 |
| abstract_inverted_index.Chinese | 1, 36 |
| abstract_inverted_index.Viterbi | 89 |
| abstract_inverted_index.cutting | 99 |
| abstract_inverted_index.dataset | 110 |
| abstract_inverted_index.devoted | 29 |
| abstract_inverted_index.domain. | 149 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.trained | 60 |
| abstract_inverted_index.vectors | 56, 59, 67 |
| abstract_inverted_index.(BiLSTM) | 51 |
| abstract_inverted_index.(PV-DM). | 68 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.analysis | 18 |
| abstract_inverted_index.improved | 87 |
| abstract_inverted_index.increase | 92 |
| abstract_inverted_index.judgment | 20, 41 |
| abstract_inverted_index.judicial | 8, 148 |
| abstract_inverted_index.proposed | 125 |
| abstract_inverted_index.reducing | 132 |
| abstract_inverted_index.sentence | 58 |
| abstract_inverted_index.algorithm | 90 |
| abstract_inverted_index.character | 55 |
| abstract_inverted_index.effective | 128 |
| abstract_inverted_index.important | 12 |
| abstract_inverted_index.improving | 139 |
| abstract_inverted_index.paragraph | 66 |
| abstract_inverted_index.sequence. | 84 |
| abstract_inverted_index.documents, | 42 |
| abstract_inverted_index.documents. | 21 |
| abstract_inverted_index.efficiency | 94 |
| abstract_inverted_index.researches | 26 |
| abstract_inverted_index.annotations | 113 |
| abstract_inverted_index.conditional | 76 |
| abstract_inverted_index.distributed | 62 |
| abstract_inverted_index.fundamental | 14 |
| abstract_inverted_index.recognition | 4, 39, 145 |
| abstract_inverted_index.constructed. | 115 |
| abstract_inverted_index.experimental | 117 |
| abstract_inverted_index.bidirectional | 48 |
| abstract_inverted_index.computational | 134 |
| abstract_inverted_index.effectiveness | 141 |
| abstract_inverted_index.long-short-term | 49 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5015789129 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I5343935 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.84566142 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |