Narrow road extraction from high-resolution remote sensing images: SWGE-Net and MSIF-Net Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/10095020.2024.2405017
Accurate and complete road network extraction plays a critical role in urban planning, street navigation, and emergency response. At present, narrow roads are a main feature in most public road datasets. However, the continuity and boundary completeness of the extraction results for these narrow roads are relatively poor, due to their varied shapes, uneven spatial distribution, and the presence of various interfering elements. To address these issues, this study introduces a novel network, the Self-weighted Global Context Road Extraction Network (SWGE-Net), which integrates a dilate block and an improved coordinate attention mechanism to effectively capture the complex details and spatial information of narrow roads. Furthermore, most public road training datasets often lack labels for very narrow roads, this omission leads to poor extraction results for these roads in test datasets. In order to further improve the extraction capability for unlabeled, extremely narrow roads, this study introduces another network called the Multi-scale Information Fusion Road Extraction Network (MSIF-Net), which uses the same encoders as SWGE-Net and has a special module for merging information at different scales. This module, with a dilate block and pyramid pooling-based decoder, makes the network better at recognizing and combining features of different sizes. Experimental results indicate that SWGE-Net outperforms the baseline network with road IoU scores of 71.57% and 60.67% on the DeepGlobe and CHN6-CUG road datasets, respectively an improvement of 18.51% and 5.40%. Meanwhile, MSIF-Net not only exceeds the baseline in road IoU scores for both datasets, but also achieves the best performance in extracting unlabeled, extremely narrow roads in qualitative experiments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/10095020.2024.2405017
- OA Status
- gold
- Cited By
- 2
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403298024
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403298024Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/10095020.2024.2405017Digital Object Identifier
- Title
-
Narrow road extraction from high-resolution remote sensing images: SWGE-Net and MSIF-NetWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-20Full publication date if available
- Authors
-
Z. G. Zhao, Wu Chen, San Jiang, Yaxin Li, Jingxian WangList of authors in order
- Landing page
-
https://doi.org/10.1080/10095020.2024.2405017Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/10095020.2024.2405017Direct OA link when available
- Concepts
-
Net (polyhedron), Extraction (chemistry), Remote sensing, Computer science, Artificial intelligence, Environmental science, Geography, Mathematics, Chromatography, Chemistry, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403298024 |
|---|---|
| doi | https://doi.org/10.1080/10095020.2024.2405017 |
| ids.doi | https://doi.org/10.1080/10095020.2024.2405017 |
| ids.openalex | https://openalex.org/W4403298024 |
| fwci | 1.24555854 |
| type | article |
| title | Narrow road extraction from high-resolution remote sensing images: SWGE-Net and MSIF-Net |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 18 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T13282 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Automated Road and Building Extraction |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T12543 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9696000218391418 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Groundwater and Watershed Analysis |
| is_xpac | False |
| apc_list.value | 1625 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1993 |
| apc_paid.value | 1625 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1993 |
| concepts[0].id | https://openalex.org/C14166107 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6483522057533264 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[0].display_name | Net (polyhedron) |
| concepts[1].id | https://openalex.org/C4725764 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5964186787605286 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[1].display_name | Extraction (chemistry) |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.557693362236023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4393550157546997 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3496932089328766 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.32517415285110474 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.24926841259002686 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15762335062026978 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C43617362 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10468292236328125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[8].display_name | Chromatography |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08520996570587158 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05775222182273865 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/net |
| keywords[0].score | 0.6483522057533264 |
| keywords[0].display_name | Net (polyhedron) |
| keywords[1].id | https://openalex.org/keywords/extraction |
| keywords[1].score | 0.5964186787605286 |
| keywords[1].display_name | Extraction (chemistry) |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.557693362236023 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4393550157546997 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3496932089328766 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.32517415285110474 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.24926841259002686 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.15762335062026978 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/chromatography |
| keywords[8].score | 0.10468292236328125 |
| keywords[8].display_name | Chromatography |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.08520996570587158 |
| keywords[9].display_name | Chemistry |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.05775222182273865 |
| keywords[10].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1080/10095020.2024.2405017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36798160 |
| locations[0].source.issn | 1009-5020, 1993-5153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1009-5020 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Geo-spatial Information Science |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geo-spatial Information Science |
| locations[0].landing_page_url | https://doi.org/10.1080/10095020.2024.2405017 |
| locations[1].id | pmh:oai:doaj.org/article:efc6796467c84c3e9b2566fd97bc5d19 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Geo-spatial Information Science, Pp 1-18 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/efc6796467c84c3e9b2566fd97bc5d19 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103389947 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-3417-2519 |
| authorships[0].author.display_name | Z. G. Zhao |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[0].institutions[0].id | https://openalex.org/I14243506 |
| authorships[0].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhebin Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].author.id | https://openalex.org/A5100329153 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1787-5191 |
| authorships[1].author.display_name | Wu Chen |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I14243506 |
| authorships[1].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[2].author.id | https://openalex.org/A5038282684 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7799-650X |
| authorships[2].author.display_name | San Jiang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3124059619 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, China University of Geosciences, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I3124059619 |
| authorships[2].institutions[0].ror | https://ror.org/04gcegc37 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3124059619 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Geosciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | San Jiang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, China University of Geosciences, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5100378845 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5610-3223 |
| authorships[3].author.display_name | Yaxin Li |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[3].affiliations[1].raw_affiliation_string | Algorithm Development Department, Micro Dimension Technology Limited, Hong Kong, China |
| authorships[3].institutions[0].id | https://openalex.org/I14243506 |
| authorships[3].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yaxin Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Algorithm Development Department, Micro Dimension Technology Limited, Hong Kong, China, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[4].author.id | https://openalex.org/A5101929678 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9106-6344 |
| authorships[4].author.display_name | Jingxian Wang |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[4].institutions[0].id | https://openalex.org/I14243506 |
| authorships[4].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jingxian Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/10095020.2024.2405017 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Narrow road extraction from high-resolution remote sensing images: SWGE-Net and MSIF-Net |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13282 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Automated Road and Building Extraction |
| related_works | https://openalex.org/W2912321008, https://openalex.org/W1998607122, https://openalex.org/W2324368075, https://openalex.org/W2972124131, https://openalex.org/W338149487, https://openalex.org/W4403012196, https://openalex.org/W2972032537, https://openalex.org/W150363521, https://openalex.org/W3154107650, https://openalex.org/W2613671004 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/10095020.2024.2405017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36798160 |
| best_oa_location.source.issn | 1009-5020, 1993-5153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1009-5020 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Geo-spatial Information Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geo-spatial Information Science |
| best_oa_location.landing_page_url | https://doi.org/10.1080/10095020.2024.2405017 |
| primary_location.id | doi:10.1080/10095020.2024.2405017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36798160 |
| primary_location.source.issn | 1009-5020, 1993-5153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1009-5020 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Geo-spatial Information Science |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geo-spatial Information Science |
| primary_location.landing_page_url | https://doi.org/10.1080/10095020.2024.2405017 |
| publication_date | 2024-09-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2743136947, https://openalex.org/W3021297918, https://openalex.org/W2963881378, https://openalex.org/W2962978395, https://openalex.org/W1923697677, https://openalex.org/W2889301062, https://openalex.org/W4312264252, https://openalex.org/W4387515118, https://openalex.org/W4317603812, https://openalex.org/W2804199516, https://openalex.org/W4220989974, https://openalex.org/W4391365543, https://openalex.org/W2536190202, https://openalex.org/W4385748513, https://openalex.org/W2884281986, https://openalex.org/W3212386989, https://openalex.org/W195372719, https://openalex.org/W3177052299, https://openalex.org/W3137034425, https://openalex.org/W1984288883, https://openalex.org/W4308300881, https://openalex.org/W2995766874, https://openalex.org/W2783572327, https://openalex.org/W3018699024, https://openalex.org/W4200512530, https://openalex.org/W3086017879, https://openalex.org/W1903029394, https://openalex.org/W2789894132, https://openalex.org/W2780861787, https://openalex.org/W2244429148, https://openalex.org/W2963270775, https://openalex.org/W1901129140, https://openalex.org/W3047725879, https://openalex.org/W2982628450, https://openalex.org/W4327620107, https://openalex.org/W2395811491, https://openalex.org/W3134927667, https://openalex.org/W2890554434, https://openalex.org/W4387937868, https://openalex.org/W2774320778, https://openalex.org/W4220717988, https://openalex.org/W4308720144, https://openalex.org/W2560023338, https://openalex.org/W4385347325, https://openalex.org/W2893801697, https://openalex.org/W3150573203, https://openalex.org/W3081260473 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 7, 23, 70, 83, 166, 178 |
| abstract_inverted_index.At | 18 |
| abstract_inverted_index.In | 130 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.an | 87, 222 |
| abstract_inverted_index.as | 162 |
| abstract_inverted_index.at | 172, 189 |
| abstract_inverted_index.in | 10, 26, 127, 235, 248, 254 |
| abstract_inverted_index.of | 37, 59, 101, 194, 210, 224 |
| abstract_inverted_index.on | 214 |
| abstract_inverted_index.to | 49, 92, 120, 132 |
| abstract_inverted_index.IoU | 208, 237 |
| abstract_inverted_index.and | 1, 15, 34, 56, 86, 98, 164, 181, 191, 212, 217, 226 |
| abstract_inverted_index.are | 22, 45 |
| abstract_inverted_index.but | 242 |
| abstract_inverted_index.due | 48 |
| abstract_inverted_index.for | 41, 113, 124, 138, 169, 239 |
| abstract_inverted_index.has | 165 |
| abstract_inverted_index.not | 230 |
| abstract_inverted_index.the | 32, 38, 57, 73, 95, 135, 149, 159, 186, 203, 215, 233, 245 |
| abstract_inverted_index.Road | 77, 153 |
| abstract_inverted_index.This | 175 |
| abstract_inverted_index.also | 243 |
| abstract_inverted_index.best | 246 |
| abstract_inverted_index.both | 240 |
| abstract_inverted_index.lack | 111 |
| abstract_inverted_index.main | 24 |
| abstract_inverted_index.most | 27, 105 |
| abstract_inverted_index.only | 231 |
| abstract_inverted_index.poor | 121 |
| abstract_inverted_index.road | 3, 29, 107, 207, 219, 236 |
| abstract_inverted_index.role | 9 |
| abstract_inverted_index.same | 160 |
| abstract_inverted_index.test | 128 |
| abstract_inverted_index.that | 200 |
| abstract_inverted_index.this | 67, 117, 143 |
| abstract_inverted_index.uses | 158 |
| abstract_inverted_index.very | 114 |
| abstract_inverted_index.with | 177, 206 |
| abstract_inverted_index.block | 85, 180 |
| abstract_inverted_index.leads | 119 |
| abstract_inverted_index.makes | 185 |
| abstract_inverted_index.novel | 71 |
| abstract_inverted_index.often | 110 |
| abstract_inverted_index.order | 131 |
| abstract_inverted_index.plays | 6 |
| abstract_inverted_index.poor, | 47 |
| abstract_inverted_index.roads | 21, 44, 126, 253 |
| abstract_inverted_index.study | 68, 144 |
| abstract_inverted_index.their | 50 |
| abstract_inverted_index.these | 42, 65, 125 |
| abstract_inverted_index.urban | 11 |
| abstract_inverted_index.which | 81, 157 |
| abstract_inverted_index.18.51% | 225 |
| abstract_inverted_index.5.40%. | 227 |
| abstract_inverted_index.60.67% | 213 |
| abstract_inverted_index.71.57% | 211 |
| abstract_inverted_index.Fusion | 152 |
| abstract_inverted_index.Global | 75 |
| abstract_inverted_index.better | 188 |
| abstract_inverted_index.called | 148 |
| abstract_inverted_index.dilate | 84, 179 |
| abstract_inverted_index.labels | 112 |
| abstract_inverted_index.module | 168 |
| abstract_inverted_index.narrow | 20, 43, 102, 115, 141, 252 |
| abstract_inverted_index.public | 28, 106 |
| abstract_inverted_index.roads, | 116, 142 |
| abstract_inverted_index.roads. | 103 |
| abstract_inverted_index.scores | 209, 238 |
| abstract_inverted_index.sizes. | 196 |
| abstract_inverted_index.street | 13 |
| abstract_inverted_index.uneven | 53 |
| abstract_inverted_index.varied | 51 |
| abstract_inverted_index.Context | 76 |
| abstract_inverted_index.Network | 79, 155 |
| abstract_inverted_index.address | 64 |
| abstract_inverted_index.another | 146 |
| abstract_inverted_index.capture | 94 |
| abstract_inverted_index.complex | 96 |
| abstract_inverted_index.details | 97 |
| abstract_inverted_index.exceeds | 232 |
| abstract_inverted_index.feature | 25 |
| abstract_inverted_index.further | 133 |
| abstract_inverted_index.improve | 134 |
| abstract_inverted_index.issues, | 66 |
| abstract_inverted_index.merging | 170 |
| abstract_inverted_index.module, | 176 |
| abstract_inverted_index.network | 4, 147, 187, 205 |
| abstract_inverted_index.pyramid | 182 |
| abstract_inverted_index.results | 40, 123, 198 |
| abstract_inverted_index.scales. | 174 |
| abstract_inverted_index.shapes, | 52 |
| abstract_inverted_index.spatial | 54, 99 |
| abstract_inverted_index.special | 167 |
| abstract_inverted_index.various | 60 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.CHN6-CUG | 218 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.MSIF-Net | 229 |
| abstract_inverted_index.SWGE-Net | 163, 201 |
| abstract_inverted_index.achieves | 244 |
| abstract_inverted_index.baseline | 204, 234 |
| abstract_inverted_index.boundary | 35 |
| abstract_inverted_index.complete | 2 |
| abstract_inverted_index.critical | 8 |
| abstract_inverted_index.datasets | 109 |
| abstract_inverted_index.decoder, | 184 |
| abstract_inverted_index.encoders | 161 |
| abstract_inverted_index.features | 193 |
| abstract_inverted_index.improved | 88 |
| abstract_inverted_index.indicate | 199 |
| abstract_inverted_index.network, | 72 |
| abstract_inverted_index.omission | 118 |
| abstract_inverted_index.presence | 58 |
| abstract_inverted_index.present, | 19 |
| abstract_inverted_index.training | 108 |
| abstract_inverted_index.DeepGlobe | 216 |
| abstract_inverted_index.attention | 90 |
| abstract_inverted_index.combining | 192 |
| abstract_inverted_index.datasets, | 220, 241 |
| abstract_inverted_index.datasets. | 30, 129 |
| abstract_inverted_index.different | 173, 195 |
| abstract_inverted_index.elements. | 62 |
| abstract_inverted_index.emergency | 16 |
| abstract_inverted_index.extremely | 140, 251 |
| abstract_inverted_index.mechanism | 91 |
| abstract_inverted_index.planning, | 12 |
| abstract_inverted_index.response. | 17 |
| abstract_inverted_index.Extraction | 78, 154 |
| abstract_inverted_index.Meanwhile, | 228 |
| abstract_inverted_index.capability | 137 |
| abstract_inverted_index.continuity | 33 |
| abstract_inverted_index.coordinate | 89 |
| abstract_inverted_index.extracting | 249 |
| abstract_inverted_index.extraction | 5, 39, 122, 136 |
| abstract_inverted_index.integrates | 82 |
| abstract_inverted_index.introduces | 69, 145 |
| abstract_inverted_index.relatively | 46 |
| abstract_inverted_index.unlabeled, | 139, 250 |
| abstract_inverted_index.(MSIF-Net), | 156 |
| abstract_inverted_index.(SWGE-Net), | 80 |
| abstract_inverted_index.Information | 151 |
| abstract_inverted_index.Multi-scale | 150 |
| abstract_inverted_index.effectively | 93 |
| abstract_inverted_index.improvement | 223 |
| abstract_inverted_index.information | 100, 171 |
| abstract_inverted_index.interfering | 61 |
| abstract_inverted_index.navigation, | 14 |
| abstract_inverted_index.outperforms | 202 |
| abstract_inverted_index.performance | 247 |
| abstract_inverted_index.qualitative | 255 |
| abstract_inverted_index.recognizing | 190 |
| abstract_inverted_index.Experimental | 197 |
| abstract_inverted_index.Furthermore, | 104 |
| abstract_inverted_index.completeness | 36 |
| abstract_inverted_index.experiments. | 256 |
| abstract_inverted_index.respectively | 221 |
| abstract_inverted_index.Self-weighted | 74 |
| abstract_inverted_index.distribution, | 55 |
| abstract_inverted_index.pooling-based | 183 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.74778269 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |