NASGEM: Neural Architecture Search via Graph Embedding Method Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2007.04452
Neural Architecture Search (NAS) automates and prospers the design of neural networks. Estimator-based NAS has been proposed recently to model the relationship between architectures and their performance to enable scalable and flexible search. However, existing estimator-based methods encode the architecture into a latent space without considering graph similarity. Ignoring graph similarity in node-based search space may induce a large inconsistency between similar graphs and their distance in the continuous encoding space, leading to inaccurate encoding representation and/or reduced representation capacity that can yield sub-optimal search results. To preserve graph correlation information in encoding, we propose NASGEM which stands for Neural Architecture Search via Graph Embedding Method. NASGEM is driven by a novel graph embedding method equipped with similarity measures to capture the graph topology information. By precisely estimating the graph distance and using an auxiliary Weisfeiler-Lehman kernel to guide the encoding, NASGEM can utilize additional structural information to get more accurate graph representation to improve the search efficiency. GEMNet, a set of networks discovered by NASGEM, consistently outperforms networks crafted by existing search methods in classification tasks, i.e., with 0.4%-3.6% higher accuracy while having 11%- 21% fewer Multiply-Accumulates. We further transfer GEMNet for COCO object detection. In both one-stage and twostage detectors, our GEMNet surpasses its manually-crafted and automatically-searched counterparts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2007.04452
- https://arxiv.org/pdf/2007.04452
- OA Status
- green
- Cited By
- 10
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3041166015
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3041166015Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2007.04452Digital Object Identifier
- Title
-
NASGEM: Neural Architecture Search via Graph Embedding MethodWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-08Full publication date if available
- Authors
-
Hsin-Pai Cheng, Tunhou Zhang, Yixing Zhang, Shiyu Li, Feng Liang, Feng Yan, Meng Li, Vikas Chandra, Hai Li, Yiran ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2007.04452Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2007.04452Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2007.04452Direct OA link when available
- Concepts
-
Computer science, Graph embedding, Embedding, Theoretical computer science, Scalability, Graph, ENCODE, Artificial intelligence, Gene, Database, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 4, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3041166015 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2007.04452 |
| ids.doi | https://doi.org/10.48550/arxiv.2007.04452 |
| ids.mag | 3041166015 |
| ids.openalex | https://openalex.org/W3041166015 |
| fwci | |
| type | preprint |
| title | NASGEM: Neural Architecture Search via Graph Embedding Method |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9855999946594238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.689266562461853 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C75564084 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6696116924285889 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5597085 |
| concepts[1].display_name | Graph embedding |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.58186936378479 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C80444323 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5499472618103027 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[3].display_name | Theoretical computer science |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5464854836463928 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.545674204826355 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C66746571 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4450572431087494 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[6].display_name | ENCODE |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4061238765716553 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| concepts[9].id | https://openalex.org/C77088390 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[9].display_name | Database |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.689266562461853 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph-embedding |
| keywords[1].score | 0.6696116924285889 |
| keywords[1].display_name | Graph embedding |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.58186936378479 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[3].score | 0.5499472618103027 |
| keywords[3].display_name | Theoretical computer science |
| keywords[4].id | https://openalex.org/keywords/scalability |
| keywords[4].score | 0.5464854836463928 |
| keywords[4].display_name | Scalability |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.545674204826355 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/encode |
| keywords[6].score | 0.4450572431087494 |
| keywords[6].display_name | ENCODE |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4061238765716553 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2007.04452 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2007.04452 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2007.04452 |
| locations[1].id | doi:10.48550/arxiv.2007.04452 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2007.04452 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103877341 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hsin-Pai Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hsin-Pai Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052236334 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9590-9433 |
| authorships[1].author.display_name | Tunhou Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tunhou Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5116337567 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-9522-0877 |
| authorships[2].author.display_name | Yixing Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yixing Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100413190 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1990-7150 |
| authorships[3].author.display_name | Shiyu Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shiyu Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067631851 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9393-6224 |
| authorships[4].author.display_name | Feng Liang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feng Liang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101527301 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2683-8878 |
| authorships[5].author.display_name | Feng Yan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Feng Yan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100457490 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6293-4146 |
| authorships[6].author.display_name | Meng Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Meng Li |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5016704219 |
| authorships[7].author.orcid | https://orcid.org/0009-0005-4996-8455 |
| authorships[7].author.display_name | Vikas Chandra |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Vikas Chandra |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100429377 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8504-5811 |
| authorships[8].author.display_name | Hai Li |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Hai Li |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5058073627 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1486-8412 |
| authorships[9].author.display_name | Yiran Chen |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Yiran Chen |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2007.04452 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | NASGEM: Neural Architecture Search via Graph Embedding Method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W3036264823, https://openalex.org/W3206528106, https://openalex.org/W2912814903, https://openalex.org/W2123605750, https://openalex.org/W2088740331, https://openalex.org/W2950907416, https://openalex.org/W3038102983, https://openalex.org/W1559483280, https://openalex.org/W2082479932, https://openalex.org/W2932872266 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2007.04452 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2007.04452 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2007.04452 |
| primary_location.id | pmh:oai:arXiv.org:2007.04452 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2007.04452 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2007.04452 |
| publication_date | 2020-07-08 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2415243320, https://openalex.org/W2964321699, https://openalex.org/W2902251695, https://openalex.org/W2612872092, https://openalex.org/W2393319904, https://openalex.org/W2613718673, https://openalex.org/W2963163009, https://openalex.org/W2964331719, https://openalex.org/W2997806280, https://openalex.org/W2981985696, https://openalex.org/W2944213978, https://openalex.org/W2018764772, https://openalex.org/W2767274188, https://openalex.org/W2963918968, https://openalex.org/W2962746461, https://openalex.org/W2888429796, https://openalex.org/W2981748264, https://openalex.org/W1861492603, https://openalex.org/W2990927300, https://openalex.org/W2962847566, https://openalex.org/W2810075754, https://openalex.org/W2947449675, https://openalex.org/W3034906194, https://openalex.org/W2142498761, https://openalex.org/W2964081807, https://openalex.org/W2960010704, https://openalex.org/W1574447377, https://openalex.org/W2916118939, https://openalex.org/W2917028965, https://openalex.org/W2963351448, https://openalex.org/W2972830778, https://openalex.org/W2965658867, https://openalex.org/W2053186076, https://openalex.org/W3009655978, https://openalex.org/W2565639579, https://openalex.org/W2962750597, https://openalex.org/W3104097132, https://openalex.org/W1519506695, https://openalex.org/W2962847160, https://openalex.org/W3035682321, https://openalex.org/W2962756421, https://openalex.org/W3014900121, https://openalex.org/W2612445135, https://openalex.org/W2964015378, https://openalex.org/W2097117768, https://openalex.org/W2102409316, https://openalex.org/W2970991073, https://openalex.org/W2963821229, https://openalex.org/W2996409713 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 41, 57, 110, 159 |
| abstract_inverted_index.By | 125 |
| abstract_inverted_index.In | 196 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.We | 188 |
| abstract_inverted_index.an | 133 |
| abstract_inverted_index.by | 109, 164, 170 |
| abstract_inverted_index.in | 51, 66, 91, 174 |
| abstract_inverted_index.is | 107 |
| abstract_inverted_index.of | 9, 161 |
| abstract_inverted_index.to | 18, 27, 72, 119, 137, 147, 153 |
| abstract_inverted_index.we | 93 |
| abstract_inverted_index.21% | 185 |
| abstract_inverted_index.NAS | 13 |
| abstract_inverted_index.and | 5, 24, 30, 63, 131, 199, 207 |
| abstract_inverted_index.can | 81, 142 |
| abstract_inverted_index.for | 98, 192 |
| abstract_inverted_index.get | 148 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.its | 205 |
| abstract_inverted_index.may | 55 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.set | 160 |
| abstract_inverted_index.the | 7, 20, 38, 67, 121, 128, 139, 155 |
| abstract_inverted_index.via | 102 |
| abstract_inverted_index.11%- | 184 |
| abstract_inverted_index.COCO | 193 |
| abstract_inverted_index.been | 15 |
| abstract_inverted_index.both | 197 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.more | 149 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.with | 116, 178 |
| abstract_inverted_index.(NAS) | 3 |
| abstract_inverted_index.Graph | 103 |
| abstract_inverted_index.fewer | 186 |
| abstract_inverted_index.graph | 46, 49, 88, 112, 122, 129, 151 |
| abstract_inverted_index.guide | 138 |
| abstract_inverted_index.i.e., | 177 |
| abstract_inverted_index.large | 58 |
| abstract_inverted_index.model | 19 |
| abstract_inverted_index.novel | 111 |
| abstract_inverted_index.space | 43, 54 |
| abstract_inverted_index.their | 25, 64 |
| abstract_inverted_index.using | 132 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.while | 182 |
| abstract_inverted_index.yield | 82 |
| abstract_inverted_index.GEMNet | 191, 203 |
| abstract_inverted_index.NASGEM | 95, 106, 141 |
| abstract_inverted_index.Neural | 0, 99 |
| abstract_inverted_index.Search | 2, 101 |
| abstract_inverted_index.and/or | 76 |
| abstract_inverted_index.design | 8 |
| abstract_inverted_index.driven | 108 |
| abstract_inverted_index.enable | 28 |
| abstract_inverted_index.encode | 37 |
| abstract_inverted_index.graphs | 62 |
| abstract_inverted_index.having | 183 |
| abstract_inverted_index.higher | 180 |
| abstract_inverted_index.induce | 56 |
| abstract_inverted_index.kernel | 136 |
| abstract_inverted_index.latent | 42 |
| abstract_inverted_index.method | 114 |
| abstract_inverted_index.neural | 10 |
| abstract_inverted_index.object | 194 |
| abstract_inverted_index.search | 53, 84, 156, 172 |
| abstract_inverted_index.space, | 70 |
| abstract_inverted_index.stands | 97 |
| abstract_inverted_index.tasks, | 176 |
| abstract_inverted_index.GEMNet, | 158 |
| abstract_inverted_index.Method. | 105 |
| abstract_inverted_index.NASGEM, | 165 |
| abstract_inverted_index.between | 22, 60 |
| abstract_inverted_index.capture | 120 |
| abstract_inverted_index.crafted | 169 |
| abstract_inverted_index.further | 189 |
| abstract_inverted_index.improve | 154 |
| abstract_inverted_index.leading | 71 |
| abstract_inverted_index.methods | 36, 173 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.reduced | 77 |
| abstract_inverted_index.search. | 32 |
| abstract_inverted_index.similar | 61 |
| abstract_inverted_index.utilize | 143 |
| abstract_inverted_index.without | 44 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.Ignoring | 48 |
| abstract_inverted_index.accuracy | 181 |
| abstract_inverted_index.accurate | 150 |
| abstract_inverted_index.capacity | 79 |
| abstract_inverted_index.distance | 65, 130 |
| abstract_inverted_index.encoding | 69, 74 |
| abstract_inverted_index.equipped | 115 |
| abstract_inverted_index.existing | 34, 171 |
| abstract_inverted_index.flexible | 31 |
| abstract_inverted_index.measures | 118 |
| abstract_inverted_index.networks | 162, 168 |
| abstract_inverted_index.preserve | 87 |
| abstract_inverted_index.proposed | 16 |
| abstract_inverted_index.prospers | 6 |
| abstract_inverted_index.recently | 17 |
| abstract_inverted_index.results. | 85 |
| abstract_inverted_index.scalable | 29 |
| abstract_inverted_index.topology | 123 |
| abstract_inverted_index.transfer | 190 |
| abstract_inverted_index.twostage | 200 |
| abstract_inverted_index.0.4%-3.6% | 179 |
| abstract_inverted_index.Embedding | 104 |
| abstract_inverted_index.automates | 4 |
| abstract_inverted_index.auxiliary | 134 |
| abstract_inverted_index.embedding | 113 |
| abstract_inverted_index.encoding, | 92, 140 |
| abstract_inverted_index.networks. | 11 |
| abstract_inverted_index.one-stage | 198 |
| abstract_inverted_index.precisely | 126 |
| abstract_inverted_index.surpasses | 204 |
| abstract_inverted_index.additional | 144 |
| abstract_inverted_index.continuous | 68 |
| abstract_inverted_index.detection. | 195 |
| abstract_inverted_index.detectors, | 201 |
| abstract_inverted_index.discovered | 163 |
| abstract_inverted_index.estimating | 127 |
| abstract_inverted_index.inaccurate | 73 |
| abstract_inverted_index.node-based | 52 |
| abstract_inverted_index.similarity | 50, 117 |
| abstract_inverted_index.structural | 145 |
| abstract_inverted_index.considering | 45 |
| abstract_inverted_index.correlation | 89 |
| abstract_inverted_index.efficiency. | 157 |
| abstract_inverted_index.information | 90, 146 |
| abstract_inverted_index.outperforms | 167 |
| abstract_inverted_index.performance | 26 |
| abstract_inverted_index.similarity. | 47 |
| abstract_inverted_index.sub-optimal | 83 |
| abstract_inverted_index.Architecture | 1, 100 |
| abstract_inverted_index.architecture | 39 |
| abstract_inverted_index.consistently | 166 |
| abstract_inverted_index.information. | 124 |
| abstract_inverted_index.relationship | 21 |
| abstract_inverted_index.architectures | 23 |
| abstract_inverted_index.counterparts. | 209 |
| abstract_inverted_index.inconsistency | 59 |
| abstract_inverted_index.classification | 175 |
| abstract_inverted_index.representation | 75, 78, 152 |
| abstract_inverted_index.Estimator-based | 12 |
| abstract_inverted_index.estimator-based | 35 |
| abstract_inverted_index.manually-crafted | 206 |
| abstract_inverted_index.Weisfeiler-Lehman | 135 |
| abstract_inverted_index.Multiply-Accumulates. | 187 |
| abstract_inverted_index.automatically-searched | 208 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |