Natural language description of images using hybrid recurrent neural network Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.11591/ijece.v9i4.pp2932-2940
We presented a learning model that generated natural language description of images. The model utilized the connections between natural language and visual data by produced text line based contents from a given image. Our Hybrid Recurrent Neural Network model is based on the intricacies of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Bi-directional Recurrent Neural Network (BRNN) models. We conducted experiments on three benchmark datasets, e.g., Flickr8K, Flickr30K, and MS COCO. Our hybrid model utilized LSTM model to encode text line or sentences independent of the object location and BRNN for word representation, this reduced the computational complexities without compromising the accuracy of the descriptor. The model produced better accuracy in retrieving natural language based description on the dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijece.v9i4.pp2932-2940
- http://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126
- OA Status
- diamond
- Cited By
- 11
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2982487068
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2982487068Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijece.v9i4.pp2932-2940Digital Object Identifier
- Title
-
Natural language description of images using hybrid recurrent neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-08-01Full publication date if available
- Authors
-
Md. Asifuzzaman Jishan, Khan Raqib Mahmud, Abul Kalam Al AzadList of authors in order
- Landing page
-
https://doi.org/10.11591/ijece.v9i4.pp2932-2940Publisher landing page
- PDF URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126Direct OA link when available
- Concepts
-
Computer science, Recurrent neural network, Artificial intelligence, Benchmark (surveying), Convolutional neural network, Natural language, Natural language processing, Line (geometry), Word (group theory), Representation (politics), Artificial neural network, Pattern recognition (psychology), Object (grammar), Language model, Political science, Politics, Geodesy, Mathematics, Geography, Philosophy, Law, Geometry, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2022: 2, 2021: 4, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2982487068 |
|---|---|
| doi | https://doi.org/10.11591/ijece.v9i4.pp2932-2940 |
| ids.doi | https://doi.org/10.11591/ijece.v9i4.pp2932-2940 |
| ids.mag | 2982487068 |
| ids.openalex | https://openalex.org/W2982487068 |
| fwci | 0.96197182 |
| type | article |
| title | Natural language description of images using hybrid recurrent neural network |
| biblio.issue | 4 |
| biblio.volume | 9 |
| biblio.last_page | 2932 |
| biblio.first_page | 2932 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8628336191177368 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C147168706 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7689528465270996 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[1].display_name | Recurrent neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7079336047172546 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.675794243812561 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.633289098739624 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C195324797 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5453859567642212 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[5].display_name | Natural language |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5261656641960144 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C198352243 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5016753673553467 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[7].display_name | Line (geometry) |
| concepts[8].id | https://openalex.org/C90805587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4805513024330139 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[8].display_name | Word (group theory) |
| concepts[9].id | https://openalex.org/C2776359362 |
| concepts[9].level | 3 |
| concepts[9].score | 0.47867709398269653 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[9].display_name | Representation (politics) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4749966859817505 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4477604627609253 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C2781238097 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44462740421295166 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[12].display_name | Object (grammar) |
| concepts[13].id | https://openalex.org/C137293760 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41406866908073425 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[13].display_name | Language model |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C94625758 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[15].display_name | Politics |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C199539241 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[20].display_name | Law |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| concepts[22].id | https://openalex.org/C41895202 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[22].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8628336191177368 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[1].score | 0.7689528465270996 |
| keywords[1].display_name | Recurrent neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7079336047172546 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.675794243812561 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.633289098739624 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/natural-language |
| keywords[5].score | 0.5453859567642212 |
| keywords[5].display_name | Natural language |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.5261656641960144 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/line |
| keywords[7].score | 0.5016753673553467 |
| keywords[7].display_name | Line (geometry) |
| keywords[8].id | https://openalex.org/keywords/word |
| keywords[8].score | 0.4805513024330139 |
| keywords[8].display_name | Word (group theory) |
| keywords[9].id | https://openalex.org/keywords/representation |
| keywords[9].score | 0.47867709398269653 |
| keywords[9].display_name | Representation (politics) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4749966859817505 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.4477604627609253 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/object |
| keywords[12].score | 0.44462740421295166 |
| keywords[12].display_name | Object (grammar) |
| keywords[13].id | https://openalex.org/keywords/language-model |
| keywords[13].score | 0.41406866908073425 |
| keywords[13].display_name | Language model |
| language | en |
| locations[0].id | doi:10.11591/ijece.v9i4.pp2932-2940 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764532672 |
| locations[0].source.issn | 2088-8708 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2088-8708 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijece.v9i4.pp2932-2940 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007927719 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9540-5614 |
| authorships[0].author.display_name | Md. Asifuzzaman Jishan |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3131708325 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Liberal Arts Bangladesh (ULAB) |
| authorships[0].institutions[0].id | https://openalex.org/I3131708325 |
| authorships[0].institutions[0].ror | https://ror.org/012br3z79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3131708325 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | University of Liberal Arts Bangladesh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Md. Asifuzzaman Jishan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Liberal Arts Bangladesh (ULAB) |
| authorships[1].author.id | https://openalex.org/A5060044713 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6473-2978 |
| authorships[1].author.display_name | Khan Raqib Mahmud |
| authorships[1].countries | BD |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3131708325 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Liberal Arts Bangladesh (ULAB) |
| authorships[1].institutions[0].id | https://openalex.org/I3131708325 |
| authorships[1].institutions[0].ror | https://ror.org/012br3z79 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3131708325 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | University of Liberal Arts Bangladesh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khan Raqib Mahmud |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Liberal Arts Bangladesh (ULAB) |
| authorships[2].author.id | https://openalex.org/A5102744886 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3399-3195 |
| authorships[2].author.display_name | Abul Kalam Al Azad |
| authorships[2].countries | BD |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3131708325 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Liberal Arts Bangladesh (ULAB) |
| authorships[2].institutions[0].id | https://openalex.org/I3131708325 |
| authorships[2].institutions[0].ror | https://ror.org/012br3z79 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3131708325 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | University of Liberal Arts Bangladesh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Abul Kalam Al Azad |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Liberal Arts Bangladesh (ULAB) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Natural language description of images using hybrid recurrent neural network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4225394202, https://openalex.org/W4298287631, https://openalex.org/W2953061907, https://openalex.org/W3032952384, https://openalex.org/W3034302643, https://openalex.org/W1847088711, https://openalex.org/W2160451571, https://openalex.org/W2495256954, https://openalex.org/W2259317772, https://openalex.org/W2944691285 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijece.v9i4.pp2932-2940 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764532672 |
| best_oa_location.source.issn | 2088-8708 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2088-8708 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijece.v9i4.pp2932-2940 |
| primary_location.id | doi:10.11591/ijece.v9i4.pp2932-2940 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764532672 |
| primary_location.source.issn | 2088-8708 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2088-8708 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15743/13126 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijece.v9i4.pp2932-2940 |
| publication_date | 2019-08-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W6664519127, https://openalex.org/W6639657675, https://openalex.org/W2463955103, https://openalex.org/W6719103691, https://openalex.org/W2147625498, https://openalex.org/W2106624428, https://openalex.org/W6682033118, https://openalex.org/W62621907, https://openalex.org/W1969616664, https://openalex.org/W2149172860, https://openalex.org/W1897761818, https://openalex.org/W6751607566, https://openalex.org/W2282219577, https://openalex.org/W2767780846, https://openalex.org/W6676297131, https://openalex.org/W2248026759, https://openalex.org/W6639102338, https://openalex.org/W2112796928, https://openalex.org/W2163605009, https://openalex.org/W2131774270, https://openalex.org/W2185175083, https://openalex.org/W1832693441, https://openalex.org/W2141125852, https://openalex.org/W1924770834, https://openalex.org/W2294797155, https://openalex.org/W6725647748, https://openalex.org/W1598796236, https://openalex.org/W2118688707, https://openalex.org/W2112912048, https://openalex.org/W2117539524, https://openalex.org/W2102605133, https://openalex.org/W2153579005, https://openalex.org/W6635446068, https://openalex.org/W2159243025, https://openalex.org/W1947481528, https://openalex.org/W6640169532, https://openalex.org/W2122180654, https://openalex.org/W2056621158, https://openalex.org/W2296385829, https://openalex.org/W1861492603, https://openalex.org/W2963088515, https://openalex.org/W4239072543, https://openalex.org/W4294170691, https://openalex.org/W2508514999, https://openalex.org/W68733909, https://openalex.org/W2066134726, https://openalex.org/W1931639407, https://openalex.org/W1895577753, https://openalex.org/W2108598243, https://openalex.org/W2149536503, https://openalex.org/W2803259101, https://openalex.org/W1591801644 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 2, 30 |
| abstract_inverted_index.MS | 71 |
| abstract_inverted_index.We | 0, 60 |
| abstract_inverted_index.by | 23 |
| abstract_inverted_index.in | 112 |
| abstract_inverted_index.is | 39 |
| abstract_inverted_index.of | 10, 44, 86, 104 |
| abstract_inverted_index.on | 41, 63, 118 |
| abstract_inverted_index.or | 83 |
| abstract_inverted_index.to | 79 |
| abstract_inverted_index.Our | 33, 73 |
| abstract_inverted_index.The | 12, 107 |
| abstract_inverted_index.and | 20, 53, 70, 90 |
| abstract_inverted_index.for | 92 |
| abstract_inverted_index.the | 15, 42, 87, 97, 102, 105, 119 |
| abstract_inverted_index.BRNN | 91 |
| abstract_inverted_index.LSTM | 77 |
| abstract_inverted_index.Long | 49 |
| abstract_inverted_index.data | 22 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.line | 26, 82 |
| abstract_inverted_index.text | 25, 81 |
| abstract_inverted_index.that | 5 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.word | 93 |
| abstract_inverted_index.COCO. | 72 |
| abstract_inverted_index.based | 27, 40, 116 |
| abstract_inverted_index.e.g., | 67 |
| abstract_inverted_index.given | 31 |
| abstract_inverted_index.model | 4, 13, 38, 75, 78, 108 |
| abstract_inverted_index.three | 64 |
| abstract_inverted_index.(BRNN) | 58 |
| abstract_inverted_index.(CNN), | 48 |
| abstract_inverted_index.Hybrid | 34 |
| abstract_inverted_index.Memory | 51 |
| abstract_inverted_index.Neural | 36, 46, 56 |
| abstract_inverted_index.better | 110 |
| abstract_inverted_index.encode | 80 |
| abstract_inverted_index.hybrid | 74 |
| abstract_inverted_index.image. | 32 |
| abstract_inverted_index.object | 88 |
| abstract_inverted_index.visual | 21 |
| abstract_inverted_index.(LSTM), | 52 |
| abstract_inverted_index.Network | 37, 47, 57 |
| abstract_inverted_index.between | 17 |
| abstract_inverted_index.images. | 11 |
| abstract_inverted_index.models. | 59 |
| abstract_inverted_index.natural | 7, 18, 114 |
| abstract_inverted_index.reduced | 96 |
| abstract_inverted_index.without | 100 |
| abstract_inverted_index.accuracy | 103, 111 |
| abstract_inverted_index.contents | 28 |
| abstract_inverted_index.dataset. | 120 |
| abstract_inverted_index.language | 8, 19, 115 |
| abstract_inverted_index.learning | 3 |
| abstract_inverted_index.location | 89 |
| abstract_inverted_index.produced | 24, 109 |
| abstract_inverted_index.utilized | 14, 76 |
| abstract_inverted_index.Flickr8K, | 68 |
| abstract_inverted_index.Recurrent | 35, 55 |
| abstract_inverted_index.benchmark | 65 |
| abstract_inverted_index.conducted | 61 |
| abstract_inverted_index.datasets, | 66 |
| abstract_inverted_index.generated | 6 |
| abstract_inverted_index.presented | 1 |
| abstract_inverted_index.sentences | 84 |
| abstract_inverted_index.Flickr30K, | 69 |
| abstract_inverted_index.Short-Term | 50 |
| abstract_inverted_index.retrieving | 113 |
| abstract_inverted_index.connections | 16 |
| abstract_inverted_index.description | 9, 117 |
| abstract_inverted_index.descriptor. | 106 |
| abstract_inverted_index.experiments | 62 |
| abstract_inverted_index.independent | 85 |
| abstract_inverted_index.intricacies | 43 |
| abstract_inverted_index.complexities | 99 |
| abstract_inverted_index.compromising | 101 |
| abstract_inverted_index.Convolutional | 45 |
| abstract_inverted_index.computational | 98 |
| abstract_inverted_index.Bi-directional | 54 |
| abstract_inverted_index.representation, | 94 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.79962429 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |