Navigating Local Minima in Quantized Spiking Neural Networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.07221
Spiking and Quantized Neural Networks (NNs) are becoming exceedingly important for hyper-efficient implementations of Deep Learning (DL) algorithms. However, these networks face challenges when trained using error backpropagation, due to the absence of gradient signals when applying hard thresholds. The broadly accepted trick to overcoming this is through the use of biased gradient estimators: surrogate gradients which approximate thresholding in Spiking Neural Networks (SNNs), and Straight-Through Estimators (STEs), which completely bypass thresholding in Quantized Neural Networks (QNNs). While noisy gradient feedback has enabled reasonable performance on simple supervised learning tasks, it is thought that such noise increases the difficulty of finding optima in loss landscapes, especially during the later stages of optimization. By periodically boosting the Learning Rate (LR) during training, we expect the network can navigate unexplored solution spaces that would otherwise be difficult to reach due to local minima, barriers, or flat surfaces. This paper presents a systematic evaluation of a cosine-annealed LR schedule coupled with weight-independent adaptive moment estimation as applied to Quantized SNNs (QSNNs). We provide a rigorous empirical evaluation of this technique on high precision and 4-bit quantized SNNs across three datasets, demonstrating (close to) state-of-the-art performance on the more complex datasets. Our source code is available at this link: https://github.com/jeshraghian/QSNNs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.07221
- https://arxiv.org/pdf/2202.07221
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221155749
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221155749Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.07221Digital Object Identifier
- Title
-
Navigating Local Minima in Quantized Spiking Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-15Full publication date if available
- Authors
-
Jason K. Eshraghian, Corey Lammie, Mostafa Rahimi Azghadi, Wei LüList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.07221Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.07221Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.07221Direct OA link when available
- Concepts
-
Maxima and minima, Computer science, Artificial neural network, Artificial intelligence, Thresholding, Estimator, Spiking neural network, Backpropagation, Machine learning, Gradient descent, Code (set theory), Noise (video), Algorithm, Pattern recognition (psychology), Mathematics, Statistics, Mathematical analysis, Set (abstract data type), Programming language, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221155749 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.07221 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.07221 |
| ids.openalex | https://openalex.org/W4221155749 |
| fwci | |
| type | preprint |
| title | Navigating Local Minima in Quantized Spiking Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T12808 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9746000170707703 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9595999717712402 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C186633575 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7713863849639893 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q845060 |
| concepts[0].display_name | Maxima and minima |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.764201283454895 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6502280235290527 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6215209364891052 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C191178318 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6040223836898804 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[4].display_name | Thresholding |
| concepts[5].id | https://openalex.org/C185429906 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5639969110488892 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[5].display_name | Estimator |
| concepts[6].id | https://openalex.org/C11731999 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5631424188613892 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9067355 |
| concepts[6].display_name | Spiking neural network |
| concepts[7].id | https://openalex.org/C155032097 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5412182211875916 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[7].display_name | Backpropagation |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.47541242837905884 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C153258448 |
| concepts[9].level | 3 |
| concepts[9].score | 0.43706992268562317 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[9].display_name | Gradient descent |
| concepts[10].id | https://openalex.org/C2776760102 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43655237555503845 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[10].display_name | Code (set theory) |
| concepts[11].id | https://openalex.org/C99498987 |
| concepts[11].level | 3 |
| concepts[11].score | 0.41958314180374146 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[11].display_name | Noise (video) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.37695300579071045 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3756735920906067 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13984954357147217 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/maxima-and-minima |
| keywords[0].score | 0.7713863849639893 |
| keywords[0].display_name | Maxima and minima |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.764201283454895 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6502280235290527 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6215209364891052 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/thresholding |
| keywords[4].score | 0.6040223836898804 |
| keywords[4].display_name | Thresholding |
| keywords[5].id | https://openalex.org/keywords/estimator |
| keywords[5].score | 0.5639969110488892 |
| keywords[5].display_name | Estimator |
| keywords[6].id | https://openalex.org/keywords/spiking-neural-network |
| keywords[6].score | 0.5631424188613892 |
| keywords[6].display_name | Spiking neural network |
| keywords[7].id | https://openalex.org/keywords/backpropagation |
| keywords[7].score | 0.5412182211875916 |
| keywords[7].display_name | Backpropagation |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.47541242837905884 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/gradient-descent |
| keywords[9].score | 0.43706992268562317 |
| keywords[9].display_name | Gradient descent |
| keywords[10].id | https://openalex.org/keywords/code |
| keywords[10].score | 0.43655237555503845 |
| keywords[10].display_name | Code (set theory) |
| keywords[11].id | https://openalex.org/keywords/noise |
| keywords[11].score | 0.41958314180374146 |
| keywords[11].display_name | Noise (video) |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.37695300579071045 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3756735920906067 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.13984954357147217 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.07221 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.07221 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.07221 |
| locations[1].id | doi:10.48550/arxiv.2202.07221 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.07221 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5077867821 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5832-4054 |
| authorships[0].author.display_name | Jason K. Eshraghian |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eshraghian, Jason K. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067564596 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5564-1356 |
| authorships[1].author.display_name | Corey Lammie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lammie, Corey |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009413337 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7975-3985 |
| authorships[2].author.display_name | Mostafa Rahimi Azghadi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Azghadi, Mostafa Rahimi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066881061 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4731-1976 |
| authorships[3].author.display_name | Wei Lü |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lu, Wei D. |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.07221 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Navigating Local Minima in Quantized Spiking Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W1535694475, https://openalex.org/W1558978786, https://openalex.org/W1965562977, https://openalex.org/W2135804779, https://openalex.org/W2093953062, https://openalex.org/W1554143855, https://openalex.org/W2115605526, https://openalex.org/W3093883775, https://openalex.org/W1539246760, https://openalex.org/W2786746258 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.07221 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.07221 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.07221 |
| primary_location.id | pmh:oai:arXiv.org:2202.07221 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.07221 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.07221 |
| publication_date | 2022-02-15 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 148, 152, 170 |
| abstract_inverted_index.By | 112 |
| abstract_inverted_index.LR | 154 |
| abstract_inverted_index.We | 168 |
| abstract_inverted_index.as | 162 |
| abstract_inverted_index.at | 202 |
| abstract_inverted_index.be | 133 |
| abstract_inverted_index.in | 59, 72, 102 |
| abstract_inverted_index.is | 46, 91, 200 |
| abstract_inverted_index.it | 90 |
| abstract_inverted_index.of | 13, 32, 50, 99, 110, 151, 174 |
| abstract_inverted_index.on | 85, 177, 192 |
| abstract_inverted_index.or | 142 |
| abstract_inverted_index.to | 29, 43, 135, 138, 164 |
| abstract_inverted_index.we | 121 |
| abstract_inverted_index.Our | 197 |
| abstract_inverted_index.The | 39 |
| abstract_inverted_index.and | 1, 64, 180 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.due | 28, 137 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.has | 81 |
| abstract_inverted_index.the | 30, 48, 97, 107, 115, 123, 193 |
| abstract_inverted_index.to) | 189 |
| abstract_inverted_index.use | 49 |
| abstract_inverted_index.(DL) | 16 |
| abstract_inverted_index.(LR) | 118 |
| abstract_inverted_index.Deep | 14 |
| abstract_inverted_index.Rate | 117 |
| abstract_inverted_index.SNNs | 166, 183 |
| abstract_inverted_index.This | 145 |
| abstract_inverted_index.code | 199 |
| abstract_inverted_index.face | 21 |
| abstract_inverted_index.flat | 143 |
| abstract_inverted_index.hard | 37 |
| abstract_inverted_index.high | 178 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.more | 194 |
| abstract_inverted_index.such | 94 |
| abstract_inverted_index.that | 93, 130 |
| abstract_inverted_index.this | 45, 175, 203 |
| abstract_inverted_index.when | 23, 35 |
| abstract_inverted_index.with | 157 |
| abstract_inverted_index.(NNs) | 5 |
| abstract_inverted_index.4-bit | 181 |
| abstract_inverted_index.While | 77 |
| abstract_inverted_index.error | 26 |
| abstract_inverted_index.later | 108 |
| abstract_inverted_index.link: | 204 |
| abstract_inverted_index.local | 139 |
| abstract_inverted_index.noise | 95 |
| abstract_inverted_index.noisy | 78 |
| abstract_inverted_index.paper | 146 |
| abstract_inverted_index.reach | 136 |
| abstract_inverted_index.these | 19 |
| abstract_inverted_index.three | 185 |
| abstract_inverted_index.trick | 42 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.which | 56, 68 |
| abstract_inverted_index.would | 131 |
| abstract_inverted_index.(close | 188 |
| abstract_inverted_index.Neural | 3, 61, 74 |
| abstract_inverted_index.across | 184 |
| abstract_inverted_index.biased | 51 |
| abstract_inverted_index.bypass | 70 |
| abstract_inverted_index.during | 106, 119 |
| abstract_inverted_index.expect | 122 |
| abstract_inverted_index.moment | 160 |
| abstract_inverted_index.optima | 101 |
| abstract_inverted_index.simple | 86 |
| abstract_inverted_index.source | 198 |
| abstract_inverted_index.spaces | 129 |
| abstract_inverted_index.stages | 109 |
| abstract_inverted_index.tasks, | 89 |
| abstract_inverted_index.(QNNs). | 76 |
| abstract_inverted_index.(SNNs), | 63 |
| abstract_inverted_index.(STEs), | 67 |
| abstract_inverted_index.Spiking | 0, 60 |
| abstract_inverted_index.absence | 31 |
| abstract_inverted_index.applied | 163 |
| abstract_inverted_index.broadly | 40 |
| abstract_inverted_index.complex | 195 |
| abstract_inverted_index.coupled | 156 |
| abstract_inverted_index.enabled | 82 |
| abstract_inverted_index.finding | 100 |
| abstract_inverted_index.minima, | 140 |
| abstract_inverted_index.network | 124 |
| abstract_inverted_index.provide | 169 |
| abstract_inverted_index.signals | 34 |
| abstract_inverted_index.thought | 92 |
| abstract_inverted_index.through | 47 |
| abstract_inverted_index.trained | 24 |
| abstract_inverted_index.(QSNNs). | 167 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Learning | 15, 116 |
| abstract_inverted_index.Networks | 4, 62, 75 |
| abstract_inverted_index.accepted | 41 |
| abstract_inverted_index.adaptive | 159 |
| abstract_inverted_index.applying | 36 |
| abstract_inverted_index.becoming | 7 |
| abstract_inverted_index.boosting | 114 |
| abstract_inverted_index.feedback | 80 |
| abstract_inverted_index.gradient | 33, 52, 79 |
| abstract_inverted_index.learning | 88 |
| abstract_inverted_index.navigate | 126 |
| abstract_inverted_index.networks | 20 |
| abstract_inverted_index.presents | 147 |
| abstract_inverted_index.rigorous | 171 |
| abstract_inverted_index.schedule | 155 |
| abstract_inverted_index.solution | 128 |
| abstract_inverted_index.Quantized | 2, 73, 165 |
| abstract_inverted_index.available | 201 |
| abstract_inverted_index.barriers, | 141 |
| abstract_inverted_index.datasets, | 186 |
| abstract_inverted_index.datasets. | 196 |
| abstract_inverted_index.difficult | 134 |
| abstract_inverted_index.empirical | 172 |
| abstract_inverted_index.gradients | 55 |
| abstract_inverted_index.important | 9 |
| abstract_inverted_index.increases | 96 |
| abstract_inverted_index.otherwise | 132 |
| abstract_inverted_index.precision | 179 |
| abstract_inverted_index.quantized | 182 |
| abstract_inverted_index.surfaces. | 144 |
| abstract_inverted_index.surrogate | 54 |
| abstract_inverted_index.technique | 176 |
| abstract_inverted_index.training, | 120 |
| abstract_inverted_index.Estimators | 66 |
| abstract_inverted_index.challenges | 22 |
| abstract_inverted_index.completely | 69 |
| abstract_inverted_index.difficulty | 98 |
| abstract_inverted_index.especially | 105 |
| abstract_inverted_index.estimation | 161 |
| abstract_inverted_index.evaluation | 150, 173 |
| abstract_inverted_index.overcoming | 44 |
| abstract_inverted_index.reasonable | 83 |
| abstract_inverted_index.supervised | 87 |
| abstract_inverted_index.systematic | 149 |
| abstract_inverted_index.unexplored | 127 |
| abstract_inverted_index.algorithms. | 17 |
| abstract_inverted_index.approximate | 57 |
| abstract_inverted_index.estimators: | 53 |
| abstract_inverted_index.exceedingly | 8 |
| abstract_inverted_index.landscapes, | 104 |
| abstract_inverted_index.performance | 84, 191 |
| abstract_inverted_index.thresholds. | 38 |
| abstract_inverted_index.periodically | 113 |
| abstract_inverted_index.thresholding | 58, 71 |
| abstract_inverted_index.demonstrating | 187 |
| abstract_inverted_index.optimization. | 111 |
| abstract_inverted_index.cosine-annealed | 153 |
| abstract_inverted_index.hyper-efficient | 11 |
| abstract_inverted_index.implementations | 12 |
| abstract_inverted_index.Straight-Through | 65 |
| abstract_inverted_index.backpropagation, | 27 |
| abstract_inverted_index.state-of-the-art | 190 |
| abstract_inverted_index.weight-independent | 158 |
| abstract_inverted_index.https://github.com/jeshraghian/QSNNs. | 205 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |