Nematode Detection and Classification Using Machine Learning Techniques: A Review Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/agronomy15112481
Nematode identification and quantification are critical for understanding their impact on agricultural ecosystems. However, traditional methods rely on specialised expertise in nematology, making the process costly and time-consuming. Recent developments in technologies such as Artificial Intelligence (AI) and computer vision (CV) offer promising alternatives for automating nematode identification and counting at scale. This work reviews the current literature on nematode detection using AI techniques, focusing on their application, performance, and limitations. First, we discuss various image analysis, machine learning (ML), and deep learning (DL) methods, including You Only Look Once (YOLO) models, and evaluate their effectiveness in detecting and classifying nematodes. Second, we compare and contrast the performance of ML- and DL-based approaches on different nematode datasets. Next, we highlight how these techniques can support sustainable agricultural practices and optimise crop productivity. Finally, we conclude by outlining the key opportunities and challenges in integrating ML and DL methods for precise and efficient nematode management.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3390/agronomy15112481
- https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482
- OA Status
- gold
- References
- 79
- OpenAlex ID
- https://openalex.org/W4415564906
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415564906Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agronomy15112481Digital Object Identifier
- Title
-
Nematode Detection and Classification Using Machine Learning Techniques: A ReviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-25Full publication date if available
- Authors
-
Arjun Neupane, Tej Bahadur Shahi, Richard Koech, Kerry B. Walsh, Philip Kibet LangatList of authors in order
- Landing page
-
https://doi.org/10.3390/agronomy15112481Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
79Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415564906 |
|---|---|
| doi | https://doi.org/10.3390/agronomy15112481 |
| ids.doi | https://doi.org/10.3390/agronomy15112481 |
| ids.openalex | https://openalex.org/W4415564906 |
| fwci | 0.0 |
| type | review |
| title | Nematode Detection and Classification Using Machine Learning Techniques: A Review |
| biblio.issue | 11 |
| biblio.volume | 15 |
| biblio.last_page | 2481 |
| biblio.first_page | 2481 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9785000085830688 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12894 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9375 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Date Palm Research Studies |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9009000062942505 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| language | en |
| locations[0].id | doi:10.3390/agronomy15112481 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738977497 |
| locations[0].source.issn | 2073-4395 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-4395 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Agronomy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agronomy |
| locations[0].landing_page_url | https://doi.org/10.3390/agronomy15112481 |
| locations[1].id | pmh:oai:doaj.org/article:08d1ec2b63564957a8b2c97d7efa7cf4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Agronomy, Vol 15, Iss 11, p 2481 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/08d1ec2b63564957a8b2c97d7efa7cf4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5019258868 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1010-7552 |
| authorships[0].author.display_name | Arjun Neupane |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering and Technology, CQ University, Rockhampton, QLD 4701, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I74899385 |
| authorships[0].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Central Queensland University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arjun Neupane |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Engineering and Technology, CQ University, Rockhampton, QLD 4701, Australia |
| authorships[1].author.id | https://openalex.org/A5045229875 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0616-3180 |
| authorships[1].author.display_name | Tej Bahadur Shahi |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I160993911 |
| authorships[1].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Queensland University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tej Bahadur Shahi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia |
| authorships[2].author.id | https://openalex.org/A5120142647 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0563-6687 |
| authorships[2].author.display_name | Richard Koech |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Health, Medical and Applied Sciences, CQ University, Bundaberg, QLD 4760, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I74899385 |
| authorships[2].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Central Queensland University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Richard Koech |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Health, Medical and Applied Sciences, CQ University, Bundaberg, QLD 4760, Australia |
| authorships[3].author.id | https://openalex.org/A5081837621 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3033-8622 |
| authorships[3].author.display_name | Kerry B. Walsh |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Health, Medical and Applied Sciences, CQ University, Bundaberg, QLD 4760, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I74899385 |
| authorships[3].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Central Queensland University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kerry Walsh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Health, Medical and Applied Sciences, CQ University, Bundaberg, QLD 4760, Australia |
| authorships[4].author.id | https://openalex.org/A5027569254 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0412-4804 |
| authorships[4].author.display_name | Philip Kibet Langat |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Health, Medical and Applied Sciences, CQ University, Bundaberg, QLD 4760, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I74899385 |
| authorships[4].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Central Queensland University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Philip Kibet Langat |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Health, Medical and Applied Sciences, CQ University, Bundaberg, QLD 4760, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-28T00:00:00 |
| display_name | Nematode Detection and Classification Using Machine Learning Techniques: A Review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9785000085830688 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/agronomy15112481 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738977497 |
| best_oa_location.source.issn | 2073-4395 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-4395 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Agronomy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agronomy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agronomy15112481 |
| primary_location.id | doi:10.3390/agronomy15112481 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738977497 |
| primary_location.source.issn | 2073-4395 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-4395 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Agronomy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-4395/15/11/2481/pdf?version=1761379482 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agronomy |
| primary_location.landing_page_url | https://doi.org/10.3390/agronomy15112481 |
| publication_date | 2025-10-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4386787001, https://openalex.org/W4396517653, https://openalex.org/W4388192756, https://openalex.org/W4206642232, https://openalex.org/W2981380781, https://openalex.org/W1941885189, https://openalex.org/W36320680, https://openalex.org/W2922770900, https://openalex.org/W4407628839, https://openalex.org/W4410774742, https://openalex.org/W2408814575, https://openalex.org/W4317820220, https://openalex.org/W2087889736, https://openalex.org/W4254402029, https://openalex.org/W4294877341, https://openalex.org/W3038941925, https://openalex.org/W4283753141, https://openalex.org/W4281962665, https://openalex.org/W3173032895, https://openalex.org/W4403889571, https://openalex.org/W4388411014, https://openalex.org/W4224290289, https://openalex.org/W3022788745, https://openalex.org/W2011293695, https://openalex.org/W2224322393, https://openalex.org/W2137368802, https://openalex.org/W4303579241, https://openalex.org/W4395027881, https://openalex.org/W4283324405, https://openalex.org/W1901616594, https://openalex.org/W2919115771, https://openalex.org/W4281690062, https://openalex.org/W4385516996, https://openalex.org/W4407198512, https://openalex.org/W2745808215, https://openalex.org/W4327953212, https://openalex.org/W4293817104, https://openalex.org/W2108598243, https://openalex.org/W4406311987, https://openalex.org/W4400056542, https://openalex.org/W4403905182, https://openalex.org/W2952969434, https://openalex.org/W3118615836, https://openalex.org/W4382630561, https://openalex.org/W4312477249, https://openalex.org/W3216843742, https://openalex.org/W2057882511, https://openalex.org/W2998003832, https://openalex.org/W4399188386, https://openalex.org/W1905595437, https://openalex.org/W4311125417, https://openalex.org/W4399952879, https://openalex.org/W2074070766, https://openalex.org/W4387435730, https://openalex.org/W2979634432, https://openalex.org/W4386255418, https://openalex.org/W4400189586, https://openalex.org/W4281766194, https://openalex.org/W3042573714, https://openalex.org/W4200349706, https://openalex.org/W4405200693, https://openalex.org/W3160230758, https://openalex.org/W3188082098, https://openalex.org/W3198684028, https://openalex.org/W2981211097, https://openalex.org/W3119001219, https://openalex.org/W4399529910, https://openalex.org/W2983610881, https://openalex.org/W639708223, https://openalex.org/W2193145675, https://openalex.org/W4387007015, https://openalex.org/W4402896839, https://openalex.org/W2807169760, https://openalex.org/W3027832866, https://openalex.org/W4387679403, https://openalex.org/W4400337200, https://openalex.org/W4399119526, https://openalex.org/W4401703391, https://openalex.org/W4390874575 |
| referenced_works_count | 79 |
| abstract_inverted_index.AI | 62 |
| abstract_inverted_index.DL | 146 |
| abstract_inverted_index.ML | 144 |
| abstract_inverted_index.as | 33 |
| abstract_inverted_index.at | 50 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 20, 30, 96, 142 |
| abstract_inverted_index.of | 108 |
| abstract_inverted_index.on | 10, 17, 58, 65, 113 |
| abstract_inverted_index.we | 72, 102, 118, 133 |
| abstract_inverted_index.ML- | 109 |
| abstract_inverted_index.You | 86 |
| abstract_inverted_index.and | 2, 26, 37, 48, 69, 80, 92, 98, 104, 110, 128, 140, 145, 150 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 123 |
| abstract_inverted_index.for | 6, 44, 148 |
| abstract_inverted_index.how | 120 |
| abstract_inverted_index.key | 138 |
| abstract_inverted_index.the | 23, 55, 106, 137 |
| abstract_inverted_index.(AI) | 36 |
| abstract_inverted_index.(CV) | 40 |
| abstract_inverted_index.(DL) | 83 |
| abstract_inverted_index.Look | 88 |
| abstract_inverted_index.Once | 89 |
| abstract_inverted_index.Only | 87 |
| abstract_inverted_index.This | 52 |
| abstract_inverted_index.crop | 130 |
| abstract_inverted_index.deep | 81 |
| abstract_inverted_index.rely | 16 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.work | 53 |
| abstract_inverted_index.(ML), | 79 |
| abstract_inverted_index.Next, | 117 |
| abstract_inverted_index.image | 75 |
| abstract_inverted_index.offer | 41 |
| abstract_inverted_index.their | 8, 66, 94 |
| abstract_inverted_index.these | 121 |
| abstract_inverted_index.using | 61 |
| abstract_inverted_index.(YOLO) | 90 |
| abstract_inverted_index.First, | 71 |
| abstract_inverted_index.Recent | 28 |
| abstract_inverted_index.costly | 25 |
| abstract_inverted_index.impact | 9 |
| abstract_inverted_index.making | 22 |
| abstract_inverted_index.scale. | 51 |
| abstract_inverted_index.vision | 39 |
| abstract_inverted_index.Second, | 101 |
| abstract_inverted_index.compare | 103 |
| abstract_inverted_index.current | 56 |
| abstract_inverted_index.discuss | 73 |
| abstract_inverted_index.machine | 77 |
| abstract_inverted_index.methods | 15, 147 |
| abstract_inverted_index.models, | 91 |
| abstract_inverted_index.precise | 149 |
| abstract_inverted_index.process | 24 |
| abstract_inverted_index.reviews | 54 |
| abstract_inverted_index.support | 124 |
| abstract_inverted_index.various | 74 |
| abstract_inverted_index.DL-based | 111 |
| abstract_inverted_index.Finally, | 132 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.Nematode | 0 |
| abstract_inverted_index.computer | 38 |
| abstract_inverted_index.conclude | 134 |
| abstract_inverted_index.contrast | 105 |
| abstract_inverted_index.counting | 49 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.evaluate | 93 |
| abstract_inverted_index.focusing | 64 |
| abstract_inverted_index.learning | 78, 82 |
| abstract_inverted_index.methods, | 84 |
| abstract_inverted_index.nematode | 46, 59, 115, 152 |
| abstract_inverted_index.optimise | 129 |
| abstract_inverted_index.analysis, | 76 |
| abstract_inverted_index.datasets. | 116 |
| abstract_inverted_index.detecting | 97 |
| abstract_inverted_index.detection | 60 |
| abstract_inverted_index.different | 114 |
| abstract_inverted_index.efficient | 151 |
| abstract_inverted_index.expertise | 19 |
| abstract_inverted_index.highlight | 119 |
| abstract_inverted_index.including | 85 |
| abstract_inverted_index.outlining | 136 |
| abstract_inverted_index.practices | 127 |
| abstract_inverted_index.promising | 42 |
| abstract_inverted_index.Artificial | 34 |
| abstract_inverted_index.approaches | 112 |
| abstract_inverted_index.automating | 45 |
| abstract_inverted_index.challenges | 141 |
| abstract_inverted_index.literature | 57 |
| abstract_inverted_index.nematodes. | 100 |
| abstract_inverted_index.techniques | 122 |
| abstract_inverted_index.classifying | 99 |
| abstract_inverted_index.ecosystems. | 12 |
| abstract_inverted_index.integrating | 143 |
| abstract_inverted_index.management. | 153 |
| abstract_inverted_index.nematology, | 21 |
| abstract_inverted_index.performance | 107 |
| abstract_inverted_index.specialised | 18 |
| abstract_inverted_index.sustainable | 125 |
| abstract_inverted_index.techniques, | 63 |
| abstract_inverted_index.traditional | 14 |
| abstract_inverted_index.Intelligence | 35 |
| abstract_inverted_index.agricultural | 11, 126 |
| abstract_inverted_index.alternatives | 43 |
| abstract_inverted_index.application, | 67 |
| abstract_inverted_index.developments | 29 |
| abstract_inverted_index.limitations. | 70 |
| abstract_inverted_index.performance, | 68 |
| abstract_inverted_index.technologies | 31 |
| abstract_inverted_index.effectiveness | 95 |
| abstract_inverted_index.opportunities | 139 |
| abstract_inverted_index.productivity. | 131 |
| abstract_inverted_index.understanding | 7 |
| abstract_inverted_index.identification | 1, 47 |
| abstract_inverted_index.quantification | 3 |
| abstract_inverted_index.time-consuming. | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.35808069 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |