Nerve detection and visualization using hyperspectral imaging for surgical guidance Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1117/12.3008470
During surgery of delicate regions, differentiation between nerve and surrounding tissue is crucial. Hyperspectral imaging (HSI) techniques can enhance the contrast between types of tissue beyond what the human eye can differentiate. Whereas an RGB image captures 3 bands within the visible light range (e.g., 400 nm to 700 nm), HSI can acquire many bands in wavelength increments that highlight regions of an image across a wavelength spectrum. We developed a workflow to identify nerve tissues from other similar tissues such as fat, bone, and muscle. Our workflow uses spectral angle mapper (SAM) and endmember selection. The method is robust for different types of environment and lighting conditions. We validated our workflow on two samples of human tissues. We used a compact HSI system that can image from 400 to 1700 nm to produce HSI of the samples. On these two samples, we achieved an intersection-over-union (IoU) segmentation score of 84.15% and 76.73%, respectively. We showed that our workflow identifies nerve segments that are not easily seen in RGB images. This method is fast, does not rely on special hardware, and can be applied in real time. The hyperspectral imaging and nerve detection approach may provide a powerful tool for image-guided surgery.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1117/12.3008470
- OA Status
- green
- Cited By
- 2
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391908232
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391908232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1117/12.3008470Digital Object Identifier
- Title
-
Nerve detection and visualization using hyperspectral imaging for surgical guidanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-16Full publication date if available
- Authors
-
Minh Tran, Michelle D. Bryarly, Ling Ma, Muhammad Saad Yousuf, Theodore J. Price, Baowei FeiList of authors in order
- Landing page
-
https://doi.org/10.1117/12.3008470Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11070131Direct OA link when available
- Concepts
-
Hyperspectral imaging, Visualization, Computer science, Medical imaging, Computer vision, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391908232 |
|---|---|
| doi | https://doi.org/10.1117/12.3008470 |
| ids.doi | https://doi.org/10.1117/12.3008470 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38707637 |
| ids.openalex | https://openalex.org/W4391908232 |
| fwci | 1.63814764 |
| type | article |
| title | Nerve detection and visualization using hyperspectral imaging for surgical guidance |
| biblio.issue | |
| biblio.volume | 12930 |
| biblio.last_page | 88 |
| biblio.first_page | 88 |
| topics[0].id | https://openalex.org/T10977 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Optical Imaging and Spectroscopy Techniques |
| topics[1].id | https://openalex.org/T12994 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Infrared Thermography in Medicine |
| topics[2].id | https://openalex.org/T14510 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Medical Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8888800144195557 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C36464697 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7223252654075623 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[1].display_name | Visualization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6262525320053101 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C31601959 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5557613372802734 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[3].display_name | Medical imaging |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5347492098808289 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.510735273361206 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.8888800144195557 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/visualization |
| keywords[1].score | 0.7223252654075623 |
| keywords[1].display_name | Visualization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6262525320053101 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/medical-imaging |
| keywords[3].score | 0.5557613372802734 |
| keywords[3].display_name | Medical imaging |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5347492098808289 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.510735273361206 |
| keywords[5].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1117/12.3008470 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Imaging 2024: Clinical and Biomedical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1117/12.3008470 |
| locations[1].id | pmid:38707637 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Proceedings of SPIE--the International Society for Optical Engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38707637 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11070131 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proc SPIE Int Soc Opt Eng |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11070131 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5033582086 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6999-108X |
| authorships[0].author.display_name | Minh Tran |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[0].affiliations[0].raw_affiliation_string | The Univ. of Texas at Dallas (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I162577319 |
| authorships[0].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Dallas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minh Ha Tran |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Univ. of Texas at Dallas (United States) |
| authorships[1].author.id | https://openalex.org/A5093948672 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Michelle D. Bryarly |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[1].affiliations[0].raw_affiliation_string | The Univ. of Texas at Dallas (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I162577319 |
| authorships[1].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Dallas |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michelle D. Bryarly |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Univ. of Texas at Dallas (United States) |
| authorships[2].author.id | https://openalex.org/A5100606527 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2141-614X |
| authorships[2].author.display_name | Ling Ma |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[2].affiliations[0].raw_affiliation_string | The Univ. of Texas at Dallas (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I162577319 |
| authorships[2].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Dallas |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ling Ma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Univ. of Texas at Dallas (United States) |
| authorships[3].author.id | https://openalex.org/A5066621682 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0829-8182 |
| authorships[3].author.display_name | Muhammad Saad Yousuf |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[3].affiliations[0].raw_affiliation_string | The Univ. of Texas at Dallas (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I162577319 |
| authorships[3].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas at Dallas |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muhammad Saad Yousuf |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Univ. of Texas at Dallas (United States) |
| authorships[4].author.id | https://openalex.org/A5040294572 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6971-6221 |
| authorships[4].author.display_name | Theodore J. Price |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[4].affiliations[0].raw_affiliation_string | The Univ. of Texas at Dallas (United States) |
| authorships[4].institutions[0].id | https://openalex.org/I162577319 |
| authorships[4].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas at Dallas |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Theodore J. Price |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Univ. of Texas at Dallas (United States) |
| authorships[5].author.id | https://openalex.org/A5083707303 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9123-9484 |
| authorships[5].author.display_name | Baowei Fei |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[5].affiliations[0].raw_affiliation_string | The Univ. of Texas at Dallas (United States) |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I867280407 |
| authorships[5].affiliations[1].raw_affiliation_string | Univ. of Texas Southwestern Medical Ctr. (United States) |
| authorships[5].institutions[0].id | https://openalex.org/I867280407 |
| authorships[5].institutions[0].ror | https://ror.org/05byvp690 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I867280407 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | The University of Texas Southwestern Medical Center |
| authorships[5].institutions[1].id | https://openalex.org/I162577319 |
| authorships[5].institutions[1].ror | https://ror.org/049emcs32 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I162577319 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | The University of Texas at Dallas |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Baowei Fei |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The Univ. of Texas at Dallas (United States), Univ. of Texas Southwestern Medical Ctr. (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11070131 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Nerve detection and visualization using hyperspectral imaging for surgical guidance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10977 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Optical Imaging and Spectroscopy Techniques |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398, https://openalex.org/W2775347418 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11070131 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proc SPIE Int Soc Opt Eng |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11070131 |
| primary_location.id | doi:10.1117/12.3008470 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Imaging 2024: Clinical and Biomedical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1117/12.3008470 |
| publication_date | 2024-02-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3197776042, https://openalex.org/W3035806703, https://openalex.org/W2103891692, https://openalex.org/W4251353431, https://openalex.org/W2105814526, https://openalex.org/W6792518954, https://openalex.org/W1988386267, https://openalex.org/W4362607581, https://openalex.org/W4280527939, https://openalex.org/W2947976683, https://openalex.org/W3133396482, https://openalex.org/W3156097859, https://openalex.org/W2067921689, https://openalex.org/W2109993053, https://openalex.org/W2028046216, https://openalex.org/W4233760599, https://openalex.org/W2516315420, https://openalex.org/W3145931805 |
| referenced_works_count | 18 |
| abstract_inverted_index.3 | 37 |
| abstract_inverted_index.a | 65, 70, 120, 196 |
| abstract_inverted_index.On | 138 |
| abstract_inverted_index.We | 68, 108, 118, 154 |
| abstract_inverted_index.an | 33, 62, 144 |
| abstract_inverted_index.as | 81 |
| abstract_inverted_index.be | 182 |
| abstract_inverted_index.in | 55, 167, 184 |
| abstract_inverted_index.is | 11, 98, 172 |
| abstract_inverted_index.nm | 46, 131 |
| abstract_inverted_index.of | 2, 23, 61, 103, 115, 135, 149 |
| abstract_inverted_index.on | 112, 177 |
| abstract_inverted_index.to | 47, 72, 129, 132 |
| abstract_inverted_index.we | 142 |
| abstract_inverted_index.400 | 45, 128 |
| abstract_inverted_index.700 | 48 |
| abstract_inverted_index.HSI | 50, 122, 134 |
| abstract_inverted_index.Our | 86 |
| abstract_inverted_index.RGB | 34, 168 |
| abstract_inverted_index.The | 96, 187 |
| abstract_inverted_index.and | 8, 84, 93, 105, 151, 180, 190 |
| abstract_inverted_index.are | 163 |
| abstract_inverted_index.can | 17, 30, 51, 125, 181 |
| abstract_inverted_index.eye | 29 |
| abstract_inverted_index.for | 100, 199 |
| abstract_inverted_index.may | 194 |
| abstract_inverted_index.not | 164, 175 |
| abstract_inverted_index.our | 110, 157 |
| abstract_inverted_index.the | 19, 27, 40, 136 |
| abstract_inverted_index.two | 113, 140 |
| abstract_inverted_index.1700 | 130 |
| abstract_inverted_index.This | 170 |
| abstract_inverted_index.does | 174 |
| abstract_inverted_index.fat, | 82 |
| abstract_inverted_index.from | 76, 127 |
| abstract_inverted_index.many | 53 |
| abstract_inverted_index.nm), | 49 |
| abstract_inverted_index.real | 185 |
| abstract_inverted_index.rely | 176 |
| abstract_inverted_index.seen | 166 |
| abstract_inverted_index.such | 80 |
| abstract_inverted_index.that | 58, 124, 156, 162 |
| abstract_inverted_index.tool | 198 |
| abstract_inverted_index.used | 119 |
| abstract_inverted_index.uses | 88 |
| abstract_inverted_index.what | 26 |
| abstract_inverted_index.(HSI) | 15 |
| abstract_inverted_index.(IoU) | 146 |
| abstract_inverted_index.(SAM) | 92 |
| abstract_inverted_index.angle | 90 |
| abstract_inverted_index.bands | 38, 54 |
| abstract_inverted_index.bone, | 83 |
| abstract_inverted_index.fast, | 173 |
| abstract_inverted_index.human | 28, 116 |
| abstract_inverted_index.image | 35, 63, 126 |
| abstract_inverted_index.light | 42 |
| abstract_inverted_index.nerve | 7, 74, 160, 191 |
| abstract_inverted_index.other | 77 |
| abstract_inverted_index.range | 43 |
| abstract_inverted_index.score | 148 |
| abstract_inverted_index.these | 139 |
| abstract_inverted_index.time. | 186 |
| abstract_inverted_index.types | 22, 102 |
| abstract_inverted_index.84.15% | 150 |
| abstract_inverted_index.During | 0 |
| abstract_inverted_index.across | 64 |
| abstract_inverted_index.beyond | 25 |
| abstract_inverted_index.easily | 165 |
| abstract_inverted_index.mapper | 91 |
| abstract_inverted_index.method | 97, 171 |
| abstract_inverted_index.robust | 99 |
| abstract_inverted_index.showed | 155 |
| abstract_inverted_index.system | 123 |
| abstract_inverted_index.tissue | 10, 24 |
| abstract_inverted_index.within | 39 |
| abstract_inverted_index.76.73%, | 152 |
| abstract_inverted_index.Whereas | 32 |
| abstract_inverted_index.acquire | 52 |
| abstract_inverted_index.applied | 183 |
| abstract_inverted_index.between | 6, 21 |
| abstract_inverted_index.compact | 121 |
| abstract_inverted_index.enhance | 18 |
| abstract_inverted_index.images. | 169 |
| abstract_inverted_index.imaging | 14, 189 |
| abstract_inverted_index.muscle. | 85 |
| abstract_inverted_index.produce | 133 |
| abstract_inverted_index.provide | 195 |
| abstract_inverted_index.regions | 60 |
| abstract_inverted_index.samples | 114 |
| abstract_inverted_index.similar | 78 |
| abstract_inverted_index.special | 178 |
| abstract_inverted_index.surgery | 1 |
| abstract_inverted_index.tissues | 75, 79 |
| abstract_inverted_index.visible | 41 |
| abstract_inverted_index.achieved | 143 |
| abstract_inverted_index.approach | 193 |
| abstract_inverted_index.captures | 36 |
| abstract_inverted_index.contrast | 20 |
| abstract_inverted_index.crucial. | 12 |
| abstract_inverted_index.delicate | 3 |
| abstract_inverted_index.identify | 73 |
| abstract_inverted_index.lighting | 106 |
| abstract_inverted_index.powerful | 197 |
| abstract_inverted_index.regions, | 4 |
| abstract_inverted_index.samples, | 141 |
| abstract_inverted_index.samples. | 137 |
| abstract_inverted_index.segments | 161 |
| abstract_inverted_index.spectral | 89 |
| abstract_inverted_index.surgery. | 201 |
| abstract_inverted_index.tissues. | 117 |
| abstract_inverted_index.workflow | 71, 87, 111, 158 |
| abstract_inverted_index.detection | 192 |
| abstract_inverted_index.developed | 69 |
| abstract_inverted_index.different | 101 |
| abstract_inverted_index.endmember | 94 |
| abstract_inverted_index.hardware, | 179 |
| abstract_inverted_index.highlight | 59 |
| abstract_inverted_index.spectrum. | 67 |
| abstract_inverted_index.validated | 109 |
| abstract_inverted_index.identifies | 159 |
| abstract_inverted_index.increments | 57 |
| abstract_inverted_index.selection. | 95 |
| abstract_inverted_index.techniques | 16 |
| abstract_inverted_index.wavelength | 56, 66 |
| abstract_inverted_index.conditions. | 107 |
| abstract_inverted_index.environment | 104 |
| abstract_inverted_index.surrounding | 9 |
| abstract_inverted_index.image-guided | 200 |
| abstract_inverted_index.segmentation | 147 |
| abstract_inverted_index.(<i>e.g.,</i> | 44 |
| abstract_inverted_index.Hyperspectral | 13 |
| abstract_inverted_index.hyperspectral | 188 |
| abstract_inverted_index.respectively. | 153 |
| abstract_inverted_index.differentiate. | 31 |
| abstract_inverted_index.differentiation | 5 |
| abstract_inverted_index.intersection-over-union | 145 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.74951815 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |