Network Inspection Using Heterogeneous Sensors for Detecting Strategic Attacks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.05009
We consider a two-player network inspection game, in which a defender allocates sensors with potentially heterogeneous detection capabilities in order to detect multiple attacks caused by a strategic attacker. The objective of the defender (resp. attacker) is to minimize (resp. maximize) the expected number of undetected attacks by selecting a potentially randomized inspection (resp. attack) strategy. We analytically characterize Nash equilibria of this large-scale zero-sum game when every vulnerable network component can be monitored from a unique sensor location. We then leverage our equilibrium analysis to design a heuristic solution approach based on minimum set covers for computing inspection strategies in general. Our computational results on a benchmark cyber-physical distribution network illustrate the performance and computational tractability of our solution approach.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.05009
- https://arxiv.org/pdf/2302.05009
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320559201
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320559201Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.05009Digital Object Identifier
- Title
-
Network Inspection Using Heterogeneous Sensors for Detecting Strategic AttacksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-10Full publication date if available
- Authors
-
Bobak McCann, Mathieu DahanList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.05009Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.05009Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.05009Direct OA link when available
- Concepts
-
Leverage (statistics), Computer science, Benchmark (surveying), Nash equilibrium, Heuristic, Set (abstract data type), Network security, Mathematical optimization, Artificial intelligence, Computer security, Mathematics, Geodesy, Programming language, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320559201 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.05009 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.05009 |
| ids.openalex | https://openalex.org/W4320559201 |
| fwci | 0.0 |
| type | preprint |
| title | Network Inspection Using Heterogeneous Sensors for Detecting Strategic Attacks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11807 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9789000153541565 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Resilience and Vulnerability Analysis |
| topics[1].id | https://openalex.org/T10917 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9778000116348267 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Smart Grid Security and Resilience |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153083717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8070273399353027 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[0].display_name | Leverage (statistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7070364356040955 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5693532228469849 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C46814582 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5325977206230164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q23389 |
| concepts[3].display_name | Nash equilibrium |
| concepts[4].id | https://openalex.org/C173801870 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5153469443321228 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[4].display_name | Heuristic |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4775222837924957 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C182590292 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4108857810497284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q989632 |
| concepts[6].display_name | Network security |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36417582631111145 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.25925949215888977 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C38652104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.25770848989486694 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[9].display_name | Computer security |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11863172054290771 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/leverage |
| keywords[0].score | 0.8070273399353027 |
| keywords[0].display_name | Leverage (statistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7070364356040955 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5693532228469849 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/nash-equilibrium |
| keywords[3].score | 0.5325977206230164 |
| keywords[3].display_name | Nash equilibrium |
| keywords[4].id | https://openalex.org/keywords/heuristic |
| keywords[4].score | 0.5153469443321228 |
| keywords[4].display_name | Heuristic |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.4775222837924957 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/network-security |
| keywords[6].score | 0.4108857810497284 |
| keywords[6].display_name | Network security |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.36417582631111145 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.25925949215888977 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/computer-security |
| keywords[9].score | 0.25770848989486694 |
| keywords[9].display_name | Computer security |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.11863172054290771 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.05009 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.05009 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.05009 |
| locations[1].id | doi:10.48550/arxiv.2302.05009 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.05009 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065922275 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bobak McCann |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | McCann, Bobak |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067459518 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0973-6973 |
| authorships[1].author.display_name | Mathieu Dahan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dahan, Mathieu |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.05009 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Network Inspection Using Heterogeneous Sensors for Detecting Strategic Attacks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11807 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9789000153541565 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Resilience and Vulnerability Analysis |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574, https://openalex.org/W4246352526, https://openalex.org/W2121910908 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.05009 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.05009 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.05009 |
| primary_location.id | pmh:oai:arXiv.org:2302.05009 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.05009 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.05009 |
| publication_date | 2023-02-10 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 9, 26, 49, 75, 87, 106 |
| abstract_inverted_index.We | 0, 56, 79 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.by | 25, 47 |
| abstract_inverted_index.in | 7, 18, 100 |
| abstract_inverted_index.is | 36 |
| abstract_inverted_index.of | 31, 44, 61, 117 |
| abstract_inverted_index.on | 92, 105 |
| abstract_inverted_index.to | 20, 37, 85 |
| abstract_inverted_index.Our | 102 |
| abstract_inverted_index.The | 29 |
| abstract_inverted_index.and | 114 |
| abstract_inverted_index.can | 71 |
| abstract_inverted_index.for | 96 |
| abstract_inverted_index.our | 82, 118 |
| abstract_inverted_index.set | 94 |
| abstract_inverted_index.the | 32, 41, 112 |
| abstract_inverted_index.Nash | 59 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.game | 65 |
| abstract_inverted_index.then | 80 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.when | 66 |
| abstract_inverted_index.with | 13 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.every | 67 |
| abstract_inverted_index.game, | 6 |
| abstract_inverted_index.order | 19 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.(resp. | 34, 39, 53 |
| abstract_inverted_index.caused | 24 |
| abstract_inverted_index.covers | 95 |
| abstract_inverted_index.design | 86 |
| abstract_inverted_index.detect | 21 |
| abstract_inverted_index.number | 43 |
| abstract_inverted_index.sensor | 77 |
| abstract_inverted_index.unique | 76 |
| abstract_inverted_index.attack) | 54 |
| abstract_inverted_index.attacks | 23, 46 |
| abstract_inverted_index.minimum | 93 |
| abstract_inverted_index.network | 4, 69, 110 |
| abstract_inverted_index.results | 104 |
| abstract_inverted_index.sensors | 12 |
| abstract_inverted_index.analysis | 84 |
| abstract_inverted_index.approach | 90 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.defender | 10, 33 |
| abstract_inverted_index.expected | 42 |
| abstract_inverted_index.general. | 101 |
| abstract_inverted_index.leverage | 81 |
| abstract_inverted_index.minimize | 38 |
| abstract_inverted_index.multiple | 22 |
| abstract_inverted_index.solution | 89, 119 |
| abstract_inverted_index.zero-sum | 64 |
| abstract_inverted_index.allocates | 11 |
| abstract_inverted_index.approach. | 120 |
| abstract_inverted_index.attacker) | 35 |
| abstract_inverted_index.attacker. | 28 |
| abstract_inverted_index.benchmark | 107 |
| abstract_inverted_index.component | 70 |
| abstract_inverted_index.computing | 97 |
| abstract_inverted_index.detection | 16 |
| abstract_inverted_index.heuristic | 88 |
| abstract_inverted_index.location. | 78 |
| abstract_inverted_index.maximize) | 40 |
| abstract_inverted_index.monitored | 73 |
| abstract_inverted_index.objective | 30 |
| abstract_inverted_index.selecting | 48 |
| abstract_inverted_index.strategic | 27 |
| abstract_inverted_index.strategy. | 55 |
| abstract_inverted_index.equilibria | 60 |
| abstract_inverted_index.illustrate | 111 |
| abstract_inverted_index.inspection | 5, 52, 98 |
| abstract_inverted_index.randomized | 51 |
| abstract_inverted_index.strategies | 99 |
| abstract_inverted_index.two-player | 3 |
| abstract_inverted_index.undetected | 45 |
| abstract_inverted_index.vulnerable | 68 |
| abstract_inverted_index.equilibrium | 83 |
| abstract_inverted_index.large-scale | 63 |
| abstract_inverted_index.performance | 113 |
| abstract_inverted_index.potentially | 14, 50 |
| abstract_inverted_index.analytically | 57 |
| abstract_inverted_index.capabilities | 17 |
| abstract_inverted_index.characterize | 58 |
| abstract_inverted_index.distribution | 109 |
| abstract_inverted_index.tractability | 116 |
| abstract_inverted_index.computational | 103, 115 |
| abstract_inverted_index.heterogeneous | 15 |
| abstract_inverted_index.cyber-physical | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.0133642 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |