Network intrusion detection using generative adversarial networks. Article Swipe
Intrusion detection systems (IDS), as one of important security solutions, are used to detect network attacks. With the extensive applications of traditional machine learning algorithms in the security field, intrusion detection methods based on the ma- chine learning techniques have been developed rapidly. However, since the progress of technology and the defects of the intrusion detection system based on machine learning algorithms, the system has gradually failed to meet the requirement for cyber security. Generative Adversarial Networks (GANs) have been widely studied and applied in anomaly detection in recent years thanks to their high potential in learning complex high-dimensional real data distribution. Deep learning techniques can greatly overcome the disadvantages of using traditional machine learning algorithms for intrusion detection. This work proposes to use current existing GANs and their variants for network intrusion detection using real dataset and show the feasibility and comparison results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://hdl.handle.net/10092/100016
- https://hdl.handle.net/10092/100016
- OA Status
- green
- Cited By
- 7
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3010985094
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3010985094Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26021/2543Digital Object Identifier
- Title
-
Network intrusion detection using generative adversarial networks.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Xiran ZhangList of authors in order
- Landing page
-
https://hdl.handle.net/10092/100016Publisher landing page
- PDF URL
-
https://hdl.handle.net/10092/100016Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10092/100016Direct OA link when available
- Concepts
-
Adversarial system, Computer science, Artificial intelligence, Intrusion detection system, Generative adversarial network, Generative grammar, Computer security, Machine learning, Deep learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 2, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3010985094 |
|---|---|
| doi | https://doi.org/10.26021/2543 |
| ids.doi | https://doi.org/10.26021/2543 |
| ids.mag | 3010985094 |
| ids.openalex | https://openalex.org/W3010985094 |
| fwci | |
| type | article |
| title | Network intrusion detection using generative adversarial networks. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9907000064849854 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9818999767303467 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12357 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9799000024795532 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Media Forensic Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7409192323684692 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6316118240356445 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5346331596374512 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C35525427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5264678001403809 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[3].display_name | Intrusion detection system |
| concepts[4].id | https://openalex.org/C2988773926 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4410383701324463 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25104379 |
| concepts[4].display_name | Generative adversarial network |
| concepts[5].id | https://openalex.org/C39890363 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43836086988449097 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[5].display_name | Generative grammar |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3633686602115631 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32266226410865784 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.21233633160591125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.7409192323684692 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6316118240356445 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5346331596374512 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[3].score | 0.5264678001403809 |
| keywords[3].display_name | Intrusion detection system |
| keywords[4].id | https://openalex.org/keywords/generative-adversarial-network |
| keywords[4].score | 0.4410383701324463 |
| keywords[4].display_name | Generative adversarial network |
| keywords[5].id | https://openalex.org/keywords/generative-grammar |
| keywords[5].score | 0.43836086988449097 |
| keywords[5].display_name | Generative grammar |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.3633686602115631 |
| keywords[6].display_name | Computer security |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.32266226410865784 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.21233633160591125 |
| keywords[8].display_name | Deep learning |
| language | en |
| locations[0].id | pmh:oai:ir.canterbury.ac.nz:10092/100016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401103 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | University of Canterbury Research Repository (University of Canterbury) |
| locations[0].source.host_organization | https://openalex.org/I185492890 |
| locations[0].source.host_organization_name | University of Canterbury |
| locations[0].source.host_organization_lineage | https://openalex.org/I185492890 |
| locations[0].license | |
| locations[0].pdf_url | https://hdl.handle.net/10092/100016 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Theses / Dissertations |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://hdl.handle.net/10092/100016 |
| locations[1].id | doi:10.26021/2543 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196357 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | UC Research Repository (University of Canterbury) |
| locations[1].source.host_organization | https://openalex.org/I185492890 |
| locations[1].source.host_organization_name | University of Canterbury |
| locations[1].source.host_organization_lineage | https://openalex.org/I185492890 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | thesis |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.26021/2543 |
| locations[2].id | mag:3010985094 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://ir.canterbury.ac.nz/handle/10092/100016 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5021863884 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiran Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiran Zhang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/10092/100016 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Network intrusion detection using generative adversarial networks. |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9907000064849854 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W3128525848, https://openalex.org/W3164413336, https://openalex.org/W2351448539, https://openalex.org/W2357468538, https://openalex.org/W3186264706, https://openalex.org/W2360319270, https://openalex.org/W2390673376, https://openalex.org/W2353667420, https://openalex.org/W2394461323, https://openalex.org/W2388829411, https://openalex.org/W2350900992, https://openalex.org/W2363143468, https://openalex.org/W2978085481, https://openalex.org/W2364547960, https://openalex.org/W3208821438, https://openalex.org/W2082392955, https://openalex.org/W3096525537, https://openalex.org/W3173285125, https://openalex.org/W3007361910, https://openalex.org/W2382100369 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:ir.canterbury.ac.nz:10092/100016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401103 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | University of Canterbury Research Repository (University of Canterbury) |
| best_oa_location.source.host_organization | https://openalex.org/I185492890 |
| best_oa_location.source.host_organization_name | University of Canterbury |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I185492890 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://hdl.handle.net/10092/100016 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Theses / Dissertations |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/10092/100016 |
| primary_location.id | pmh:oai:ir.canterbury.ac.nz:10092/100016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401103 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | University of Canterbury Research Repository (University of Canterbury) |
| primary_location.source.host_organization | https://openalex.org/I185492890 |
| primary_location.source.host_organization_name | University of Canterbury |
| primary_location.source.host_organization_lineage | https://openalex.org/I185492890 |
| primary_location.license | |
| primary_location.pdf_url | https://hdl.handle.net/10092/100016 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Theses / Dissertations |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://hdl.handle.net/10092/100016 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.as | 4 |
| abstract_inverted_index.in | 25, 84, 87, 95 |
| abstract_inverted_index.of | 6, 20, 47, 52, 110 |
| abstract_inverted_index.on | 33, 58 |
| abstract_inverted_index.to | 12, 67, 91, 122 |
| abstract_inverted_index.and | 49, 82, 127, 137, 141 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.can | 105 |
| abstract_inverted_index.for | 71, 116, 130 |
| abstract_inverted_index.has | 64 |
| abstract_inverted_index.ma- | 35 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 17, 26, 34, 45, 50, 53, 62, 69, 108, 139 |
| abstract_inverted_index.use | 123 |
| abstract_inverted_index.Deep | 102 |
| abstract_inverted_index.GANs | 126 |
| abstract_inverted_index.This | 119 |
| abstract_inverted_index.With | 16 |
| abstract_inverted_index.been | 40, 79 |
| abstract_inverted_index.data | 100 |
| abstract_inverted_index.have | 39, 78 |
| abstract_inverted_index.high | 93 |
| abstract_inverted_index.meet | 68 |
| abstract_inverted_index.real | 99, 135 |
| abstract_inverted_index.show | 138 |
| abstract_inverted_index.used | 11 |
| abstract_inverted_index.work | 120 |
| abstract_inverted_index.based | 32, 57 |
| abstract_inverted_index.chine | 36 |
| abstract_inverted_index.cyber | 72 |
| abstract_inverted_index.since | 44 |
| abstract_inverted_index.their | 92, 128 |
| abstract_inverted_index.using | 111, 134 |
| abstract_inverted_index.years | 89 |
| abstract_inverted_index.(GANs) | 77 |
| abstract_inverted_index.(IDS), | 3 |
| abstract_inverted_index.detect | 13 |
| abstract_inverted_index.failed | 66 |
| abstract_inverted_index.field, | 28 |
| abstract_inverted_index.recent | 88 |
| abstract_inverted_index.system | 56, 63 |
| abstract_inverted_index.thanks | 90 |
| abstract_inverted_index.widely | 80 |
| abstract_inverted_index.anomaly | 85 |
| abstract_inverted_index.applied | 83 |
| abstract_inverted_index.complex | 97 |
| abstract_inverted_index.current | 124 |
| abstract_inverted_index.dataset | 136 |
| abstract_inverted_index.defects | 51 |
| abstract_inverted_index.greatly | 106 |
| abstract_inverted_index.machine | 22, 59, 113 |
| abstract_inverted_index.methods | 31 |
| abstract_inverted_index.network | 14, 131 |
| abstract_inverted_index.studied | 81 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.Networks | 76 |
| abstract_inverted_index.attacks. | 15 |
| abstract_inverted_index.existing | 125 |
| abstract_inverted_index.learning | 23, 37, 60, 96, 103, 114 |
| abstract_inverted_index.overcome | 107 |
| abstract_inverted_index.progress | 46 |
| abstract_inverted_index.proposes | 121 |
| abstract_inverted_index.rapidly. | 42 |
| abstract_inverted_index.results. | 143 |
| abstract_inverted_index.security | 8, 27 |
| abstract_inverted_index.variants | 129 |
| abstract_inverted_index.Intrusion | 0 |
| abstract_inverted_index.detection | 1, 30, 55, 86, 133 |
| abstract_inverted_index.developed | 41 |
| abstract_inverted_index.extensive | 18 |
| abstract_inverted_index.gradually | 65 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.intrusion | 29, 54, 117, 132 |
| abstract_inverted_index.potential | 94 |
| abstract_inverted_index.security. | 73 |
| abstract_inverted_index.Generative | 74 |
| abstract_inverted_index.algorithms | 24, 115 |
| abstract_inverted_index.comparison | 142 |
| abstract_inverted_index.detection. | 118 |
| abstract_inverted_index.solutions, | 9 |
| abstract_inverted_index.techniques | 38, 104 |
| abstract_inverted_index.technology | 48 |
| abstract_inverted_index.Adversarial | 75 |
| abstract_inverted_index.algorithms, | 61 |
| abstract_inverted_index.feasibility | 140 |
| abstract_inverted_index.requirement | 70 |
| abstract_inverted_index.traditional | 21, 112 |
| abstract_inverted_index.applications | 19 |
| abstract_inverted_index.disadvantages | 109 |
| abstract_inverted_index.distribution. | 101 |
| abstract_inverted_index.high-dimensional | 98 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5021863884 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |