NeUQI: Near-Optimal Uniform Quantization Parameter Initialization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.17595
Large language models (LLMs) achieve impressive performance across domains but face significant challenges when deployed on consumer-grade GPUs or personal devices such as laptops, due to high memory consumption and inference costs. Post-training quantization (PTQ) of LLMs offers a promising solution that reduces their memory footprint and decoding latency. In practice, PTQ with uniform quantization representation is favored for its efficiency and ease of deployment since uniform quantization is widely supported by mainstream hardware and software libraries. Recent studies on $\geq 2$-bit uniform quantization have led to noticeable improvements in post-quantization model performance; however, they primarily focus on quantization methodologies, while the initialization of quantization parameters is underexplored and still relies on the suboptimal Min-Max strategies. In this work, we propose NeUQI, a method devoted to efficiently determining near-optimal initial parameters for uniform quantization. NeUQI is orthogonal to prior quantization methodologies and can seamlessly integrate with them. The experiments with the LLaMA and Qwen families on various tasks demonstrate that our NeUQI consistently outperforms existing methods. Furthermore, when combined with a lightweight distillation strategy, NeUQI can achieve superior performance to PV-tuning, a much more resource-intensive approach.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.17595
- https://arxiv.org/pdf/2505.17595
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415035381
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415035381Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.17595Digital Object Identifier
- Title
-
NeUQI: Near-Optimal Uniform Quantization Parameter InitializationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-23Full publication date if available
- Authors
-
Lin Li, Xinyu Hu, Xiaojun WanList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.17595Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.17595Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.17595Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415035381 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.17595 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.17595 |
| ids.openalex | https://openalex.org/W4415035381 |
| fwci | |
| type | preprint |
| title | NeUQI: Near-Optimal Uniform Quantization Parameter Initialization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.95660001039505 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9426000118255615 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T11992 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9334999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | CCD and CMOS Imaging Sensors |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.17595 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.17595 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.17595 |
| locations[1].id | doi:10.48550/arxiv.2505.17595 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.17595 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100412933 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1822-4048 |
| authorships[0].author.display_name | Lin Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lin, Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102012077 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1346-5985 |
| authorships[1].author.display_name | Xinyu Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hu, Xinyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029568096 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6887-1994 |
| authorships[2].author.display_name | Xiaojun Wan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wan, Xiaojun |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.17595 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | NeUQI: Near-Optimal Uniform Quantization Parameter Initialization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.95660001039505 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.17595 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.17595 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.17595 |
| primary_location.id | pmh:oai:arXiv.org:2505.17595 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.17595 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.17595 |
| publication_date | 2025-05-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 38, 122, 170, 181 |
| abstract_inverted_index.In | 49, 116 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 71 |
| abstract_inverted_index.in | 89 |
| abstract_inverted_index.is | 56, 68, 106, 135 |
| abstract_inverted_index.of | 35, 63, 103 |
| abstract_inverted_index.on | 15, 79, 97, 111, 155 |
| abstract_inverted_index.or | 18 |
| abstract_inverted_index.to | 25, 86, 125, 137, 179 |
| abstract_inverted_index.we | 119 |
| abstract_inverted_index.PTQ | 51 |
| abstract_inverted_index.The | 147 |
| abstract_inverted_index.and | 29, 46, 61, 74, 108, 141, 152 |
| abstract_inverted_index.but | 9 |
| abstract_inverted_index.can | 142, 175 |
| abstract_inverted_index.due | 24 |
| abstract_inverted_index.for | 58, 131 |
| abstract_inverted_index.its | 59 |
| abstract_inverted_index.led | 85 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.the | 101, 112, 150 |
| abstract_inverted_index.GPUs | 17 |
| abstract_inverted_index.LLMs | 36 |
| abstract_inverted_index.Qwen | 153 |
| abstract_inverted_index.ease | 62 |
| abstract_inverted_index.face | 10 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.high | 26 |
| abstract_inverted_index.more | 183 |
| abstract_inverted_index.much | 182 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.that | 41, 159 |
| abstract_inverted_index.they | 94 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.when | 13, 167 |
| abstract_inverted_index.with | 52, 145, 149, 169 |
| abstract_inverted_index.$\geq | 80 |
| abstract_inverted_index.(PTQ) | 34 |
| abstract_inverted_index.LLaMA | 151 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.NeUQI | 134, 161, 174 |
| abstract_inverted_index.focus | 96 |
| abstract_inverted_index.model | 91 |
| abstract_inverted_index.prior | 138 |
| abstract_inverted_index.since | 65 |
| abstract_inverted_index.still | 109 |
| abstract_inverted_index.tasks | 157 |
| abstract_inverted_index.their | 43 |
| abstract_inverted_index.them. | 146 |
| abstract_inverted_index.while | 100 |
| abstract_inverted_index.work, | 118 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.2$-bit | 81 |
| abstract_inverted_index.NeUQI, | 121 |
| abstract_inverted_index.Recent | 77 |
| abstract_inverted_index.across | 7 |
| abstract_inverted_index.costs. | 31 |
| abstract_inverted_index.memory | 27, 44 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.offers | 37 |
| abstract_inverted_index.relies | 110 |
| abstract_inverted_index.widely | 69 |
| abstract_inverted_index.Min-Max | 114 |
| abstract_inverted_index.achieve | 4, 176 |
| abstract_inverted_index.devices | 20 |
| abstract_inverted_index.devoted | 124 |
| abstract_inverted_index.domains | 8 |
| abstract_inverted_index.favored | 57 |
| abstract_inverted_index.initial | 129 |
| abstract_inverted_index.propose | 120 |
| abstract_inverted_index.reduces | 42 |
| abstract_inverted_index.studies | 78 |
| abstract_inverted_index.uniform | 53, 66, 82, 132 |
| abstract_inverted_index.various | 156 |
| abstract_inverted_index.combined | 168 |
| abstract_inverted_index.decoding | 47 |
| abstract_inverted_index.deployed | 14 |
| abstract_inverted_index.existing | 164 |
| abstract_inverted_index.families | 154 |
| abstract_inverted_index.hardware | 73 |
| abstract_inverted_index.however, | 93 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.laptops, | 23 |
| abstract_inverted_index.latency. | 48 |
| abstract_inverted_index.methods. | 165 |
| abstract_inverted_index.personal | 19 |
| abstract_inverted_index.software | 75 |
| abstract_inverted_index.solution | 40 |
| abstract_inverted_index.superior | 177 |
| abstract_inverted_index.approach. | 185 |
| abstract_inverted_index.footprint | 45 |
| abstract_inverted_index.inference | 30 |
| abstract_inverted_index.integrate | 144 |
| abstract_inverted_index.practice, | 50 |
| abstract_inverted_index.primarily | 95 |
| abstract_inverted_index.promising | 39 |
| abstract_inverted_index.strategy, | 173 |
| abstract_inverted_index.supported | 70 |
| abstract_inverted_index.PV-tuning, | 180 |
| abstract_inverted_index.challenges | 12 |
| abstract_inverted_index.deployment | 64 |
| abstract_inverted_index.efficiency | 60 |
| abstract_inverted_index.impressive | 5 |
| abstract_inverted_index.libraries. | 76 |
| abstract_inverted_index.mainstream | 72 |
| abstract_inverted_index.noticeable | 87 |
| abstract_inverted_index.orthogonal | 136 |
| abstract_inverted_index.parameters | 105, 130 |
| abstract_inverted_index.seamlessly | 143 |
| abstract_inverted_index.suboptimal | 113 |
| abstract_inverted_index.consumption | 28 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.determining | 127 |
| abstract_inverted_index.efficiently | 126 |
| abstract_inverted_index.experiments | 148 |
| abstract_inverted_index.lightweight | 171 |
| abstract_inverted_index.outperforms | 163 |
| abstract_inverted_index.performance | 6, 178 |
| abstract_inverted_index.significant | 11 |
| abstract_inverted_index.strategies. | 115 |
| abstract_inverted_index.Furthermore, | 166 |
| abstract_inverted_index.consistently | 162 |
| abstract_inverted_index.distillation | 172 |
| abstract_inverted_index.improvements | 88 |
| abstract_inverted_index.near-optimal | 128 |
| abstract_inverted_index.performance; | 92 |
| abstract_inverted_index.quantization | 33, 54, 67, 83, 98, 104, 139 |
| abstract_inverted_index.Post-training | 32 |
| abstract_inverted_index.methodologies | 140 |
| abstract_inverted_index.quantization. | 133 |
| abstract_inverted_index.underexplored | 107 |
| abstract_inverted_index.consumer-grade | 16 |
| abstract_inverted_index.initialization | 102 |
| abstract_inverted_index.methodologies, | 99 |
| abstract_inverted_index.representation | 55 |
| abstract_inverted_index.post-quantization | 90 |
| abstract_inverted_index.resource-intensive | 184 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |