NeuraCrypt: Hiding Private Health Data via Random Neural Networks for\n Public Training Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2106.02484
Balancing the needs of data privacy and predictive utility is a central\nchallenge for machine learning in healthcare. In particular, privacy concerns\nhave led to a dearth of public datasets, complicated the construction of\nmulti-hospital cohorts and limited the utilization of external machine learning\nresources. To remedy this, new methods are required to enable data owners, such\nas hospitals, to share their datasets publicly, while preserving both patient\nprivacy and modeling utility. We propose NeuraCrypt, a private encoding scheme\nbased on random deep neural networks. NeuraCrypt encodes raw patient data using\na randomly constructed neural network known only to the data-owner, and\npublishes both the encoded data and associated labels publicly. From a\ntheoretical perspective, we demonstrate that sampling from a sufficiently rich\nfamily of encoding functions offers a well-defined and meaningful notion of\nprivacy against a computationally unbounded adversary with full knowledge of\nthe underlying data-distribution. We propose to approximate this family of\nencoding functions through random deep neural networks. Empirically, we\ndemonstrate the robustness of our encoding to a suite of adversarial attacks\nand show that NeuraCrypt achieves competitive accuracy to non-private baselines\non a variety of x-ray tasks. Moreover, we demonstrate that multiple hospitals,\nusing independent private encoders, can collaborate to train improved x-ray\nmodels. Finally, we release a challenge dataset to encourage the development of\nnew attacks on NeuraCrypt.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2106.02484
- https://arxiv.org/pdf/2106.02484
- OA Status
- green
- Cited By
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4322614810
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4322614810Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2106.02484Digital Object Identifier
- Title
-
NeuraCrypt: Hiding Private Health Data via Random Neural Networks for\n Public TrainingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-04Full publication date if available
- Authors
-
Adam Yala, Homa Esfahanizadeh, Rafael G. L. D' Oliveira, Ken R. Duffy, Manya Ghobadi, Tommi Jaakkola, Vinod Vaikuntanathan, Regina Barzilay, Muriel MédardList of authors in order
- Landing page
-
https://arxiv.org/abs/2106.02484Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2106.02484Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2106.02484Direct OA link when available
- Concepts
-
Computer science, Adversary, Adversarial system, Robustness (evolution), Encoding (memory), Raw data, Suite, Machine learning, Autoencoder, Artificial neural network, Deep learning, Artificial intelligence, Encoder, Deep neural networks, Variety (cybernetics), Data mining, Information privacy, Computer security, Programming language, History, Biochemistry, Gene, Chemistry, Archaeology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 3, 2022: 3, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4322614810 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2106.02484 |
| ids.openalex | https://openalex.org/W4322614810 |
| fwci | 1.26993218 |
| type | preprint |
| title | NeuraCrypt: Hiding Private Health Data via Random Neural Networks for\n Public Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7600548267364502 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C41065033 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7572087049484253 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2825412 |
| concepts[1].display_name | Adversary |
| concepts[2].id | https://openalex.org/C37736160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.657126784324646 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[2].display_name | Adversarial system |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6430946588516235 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C125411270 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6373983025550842 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[4].display_name | Encoding (memory) |
| concepts[5].id | https://openalex.org/C132964779 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6180447340011597 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[5].display_name | Raw data |
| concepts[6].id | https://openalex.org/C79581498 |
| concepts[6].level | 2 |
| concepts[6].score | 0.616301417350769 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1367530 |
| concepts[6].display_name | Suite |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5205829739570618 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C101738243 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5171410441398621 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[8].display_name | Autoencoder |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5090977549552917 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.503410279750824 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.501387357711792 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C118505674 |
| concepts[12].level | 2 |
| concepts[12].score | 0.48379868268966675 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[12].display_name | Encoder |
| concepts[13].id | https://openalex.org/C2984842247 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4223487377166748 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[13].display_name | Deep neural networks |
| concepts[14].id | https://openalex.org/C136197465 |
| concepts[14].level | 2 |
| concepts[14].score | 0.41517114639282227 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[14].display_name | Variety (cybernetics) |
| concepts[15].id | https://openalex.org/C124101348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.41502779722213745 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[15].display_name | Data mining |
| concepts[16].id | https://openalex.org/C123201435 |
| concepts[16].level | 2 |
| concepts[16].score | 0.41241830587387085 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q456632 |
| concepts[16].display_name | Information privacy |
| concepts[17].id | https://openalex.org/C38652104 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2698083817958832 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[17].display_name | Computer security |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C95457728 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[19].display_name | History |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| concepts[21].id | https://openalex.org/C104317684 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[21].display_name | Gene |
| concepts[22].id | https://openalex.org/C185592680 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[22].display_name | Chemistry |
| concepts[23].id | https://openalex.org/C166957645 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[23].display_name | Archaeology |
| concepts[24].id | https://openalex.org/C111919701 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[24].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7600548267364502 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/adversary |
| keywords[1].score | 0.7572087049484253 |
| keywords[1].display_name | Adversary |
| keywords[2].id | https://openalex.org/keywords/adversarial-system |
| keywords[2].score | 0.657126784324646 |
| keywords[2].display_name | Adversarial system |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6430946588516235 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/encoding |
| keywords[4].score | 0.6373983025550842 |
| keywords[4].display_name | Encoding (memory) |
| keywords[5].id | https://openalex.org/keywords/raw-data |
| keywords[5].score | 0.6180447340011597 |
| keywords[5].display_name | Raw data |
| keywords[6].id | https://openalex.org/keywords/suite |
| keywords[6].score | 0.616301417350769 |
| keywords[6].display_name | Suite |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5205829739570618 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/autoencoder |
| keywords[8].score | 0.5171410441398621 |
| keywords[8].display_name | Autoencoder |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.5090977549552917 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.503410279750824 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.501387357711792 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/encoder |
| keywords[12].score | 0.48379868268966675 |
| keywords[12].display_name | Encoder |
| keywords[13].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[13].score | 0.4223487377166748 |
| keywords[13].display_name | Deep neural networks |
| keywords[14].id | https://openalex.org/keywords/variety |
| keywords[14].score | 0.41517114639282227 |
| keywords[14].display_name | Variety (cybernetics) |
| keywords[15].id | https://openalex.org/keywords/data-mining |
| keywords[15].score | 0.41502779722213745 |
| keywords[15].display_name | Data mining |
| keywords[16].id | https://openalex.org/keywords/information-privacy |
| keywords[16].score | 0.41241830587387085 |
| keywords[16].display_name | Information privacy |
| keywords[17].id | https://openalex.org/keywords/computer-security |
| keywords[17].score | 0.2698083817958832 |
| keywords[17].display_name | Computer security |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2106.02484 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2106.02484 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2106.02484 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5084801169 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9576-2590 |
| authorships[0].author.display_name | Adam Yala |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yala, Adam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010743882 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1217-692X |
| authorships[1].author.display_name | Homa Esfahanizadeh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Esfahanizadeh, Homa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086462108 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rafael G. L. D' Oliveira |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oliveira, Rafael G. L. D' |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042235507 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5587-9356 |
| authorships[3].author.display_name | Ken R. Duffy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Duffy, Ken R. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058729992 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4095-1519 |
| authorships[4].author.display_name | Manya Ghobadi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ghobadi, Manya |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5048915657 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2199-0379 |
| authorships[5].author.display_name | Tommi Jaakkola |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jaakkola, Tommi S. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5109730093 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Vinod Vaikuntanathan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vaikuntanathan, Vinod |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5010124873 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Regina Barzilay |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Barzilay, Regina |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5075370174 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4059-407X |
| authorships[8].author.display_name | Muriel Médard |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Medard, Muriel |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2106.02484 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-03-01T00:00:00 |
| display_name | NeuraCrypt: Hiding Private Health Data via Random Neural Networks for\n Public Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2950183588, https://openalex.org/W3080754722, https://openalex.org/W4383221314, https://openalex.org/W3093978547, https://openalex.org/W2953536436, https://openalex.org/W3203790781, https://openalex.org/W4313346231, https://openalex.org/W2738001131, https://openalex.org/W4285785480, https://openalex.org/W2997056298 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2106.02484 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2106.02484 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2106.02484 |
| primary_location.id | pmh:oai:arXiv.org:2106.02484 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2106.02484 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2106.02484 |
| publication_date | 2021-06-04 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 23, 69, 110, 117, 124, 155, 169, 192 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.We | 66, 134 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 3, 25, 37, 113, 151, 157, 171 |
| abstract_inverted_index.on | 73, 201 |
| abstract_inverted_index.to | 22, 48, 54, 90, 136, 154, 166, 185, 195 |
| abstract_inverted_index.we | 105, 175, 190 |
| abstract_inverted_index.and | 6, 33, 63, 98, 119 |
| abstract_inverted_index.are | 46 |
| abstract_inverted_index.can | 183 |
| abstract_inverted_index.for | 12 |
| abstract_inverted_index.led | 21 |
| abstract_inverted_index.new | 44 |
| abstract_inverted_index.our | 152 |
| abstract_inverted_index.raw | 80 |
| abstract_inverted_index.the | 1, 29, 35, 91, 95, 149, 197 |
| abstract_inverted_index.From | 102 |
| abstract_inverted_index.both | 61, 94 |
| abstract_inverted_index.data | 4, 50, 82, 97 |
| abstract_inverted_index.deep | 75, 144 |
| abstract_inverted_index.from | 109 |
| abstract_inverted_index.full | 129 |
| abstract_inverted_index.only | 89 |
| abstract_inverted_index.show | 160 |
| abstract_inverted_index.that | 107, 161, 177 |
| abstract_inverted_index.this | 138 |
| abstract_inverted_index.with | 128 |
| abstract_inverted_index.known | 88 |
| abstract_inverted_index.needs | 2 |
| abstract_inverted_index.share | 55 |
| abstract_inverted_index.suite | 156 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.this, | 43 |
| abstract_inverted_index.train | 186 |
| abstract_inverted_index.while | 59 |
| abstract_inverted_index.x-ray | 172 |
| abstract_inverted_index.dearth | 24 |
| abstract_inverted_index.enable | 49 |
| abstract_inverted_index.family | 139 |
| abstract_inverted_index.labels | 100 |
| abstract_inverted_index.neural | 76, 86, 145 |
| abstract_inverted_index.notion | 121 |
| abstract_inverted_index.offers | 116 |
| abstract_inverted_index.public | 26 |
| abstract_inverted_index.random | 74, 143 |
| abstract_inverted_index.remedy | 42 |
| abstract_inverted_index.tasks. | 173 |
| abstract_inverted_index.against | 123 |
| abstract_inverted_index.attacks | 200 |
| abstract_inverted_index.cohorts | 32 |
| abstract_inverted_index.dataset | 194 |
| abstract_inverted_index.encoded | 96 |
| abstract_inverted_index.encodes | 79 |
| abstract_inverted_index.limited | 34 |
| abstract_inverted_index.machine | 13, 39 |
| abstract_inverted_index.methods | 45 |
| abstract_inverted_index.network | 87 |
| abstract_inverted_index.of\nnew | 199 |
| abstract_inverted_index.of\nthe | 131 |
| abstract_inverted_index.owners, | 51 |
| abstract_inverted_index.patient | 81 |
| abstract_inverted_index.privacy | 5, 19 |
| abstract_inverted_index.private | 70, 181 |
| abstract_inverted_index.propose | 67, 135 |
| abstract_inverted_index.release | 191 |
| abstract_inverted_index.through | 142 |
| abstract_inverted_index.utility | 8 |
| abstract_inverted_index.variety | 170 |
| abstract_inverted_index.Finally, | 189 |
| abstract_inverted_index.accuracy | 165 |
| abstract_inverted_index.achieves | 163 |
| abstract_inverted_index.datasets | 57 |
| abstract_inverted_index.encoding | 71, 114, 153 |
| abstract_inverted_index.external | 38 |
| abstract_inverted_index.improved | 187 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.modeling | 64 |
| abstract_inverted_index.multiple | 178 |
| abstract_inverted_index.randomly | 84 |
| abstract_inverted_index.required | 47 |
| abstract_inverted_index.sampling | 108 |
| abstract_inverted_index.such\nas | 52 |
| abstract_inverted_index.using\na | 83 |
| abstract_inverted_index.utility. | 65 |
| abstract_inverted_index.Balancing | 0 |
| abstract_inverted_index.Moreover, | 174 |
| abstract_inverted_index.adversary | 127 |
| abstract_inverted_index.challenge | 193 |
| abstract_inverted_index.datasets, | 27 |
| abstract_inverted_index.encoders, | 182 |
| abstract_inverted_index.encourage | 196 |
| abstract_inverted_index.functions | 115, 141 |
| abstract_inverted_index.knowledge | 130 |
| abstract_inverted_index.networks. | 77, 146 |
| abstract_inverted_index.publicly, | 58 |
| abstract_inverted_index.publicly. | 101 |
| abstract_inverted_index.unbounded | 126 |
| abstract_inverted_index.NeuraCrypt | 78, 162 |
| abstract_inverted_index.associated | 99 |
| abstract_inverted_index.hospitals, | 53 |
| abstract_inverted_index.meaningful | 120 |
| abstract_inverted_index.predictive | 7 |
| abstract_inverted_index.preserving | 60 |
| abstract_inverted_index.robustness | 150 |
| abstract_inverted_index.underlying | 132 |
| abstract_inverted_index.NeuraCrypt, | 68 |
| abstract_inverted_index.adversarial | 158 |
| abstract_inverted_index.approximate | 137 |
| abstract_inverted_index.collaborate | 184 |
| abstract_inverted_index.competitive | 164 |
| abstract_inverted_index.complicated | 28 |
| abstract_inverted_index.constructed | 85 |
| abstract_inverted_index.data-owner, | 92 |
| abstract_inverted_index.demonstrate | 106, 176 |
| abstract_inverted_index.development | 198 |
| abstract_inverted_index.healthcare. | 16 |
| abstract_inverted_index.independent | 180 |
| abstract_inverted_index.non-private | 167 |
| abstract_inverted_index.of\nprivacy | 122 |
| abstract_inverted_index.particular, | 18 |
| abstract_inverted_index.utilization | 36 |
| abstract_inverted_index.Empirically, | 147 |
| abstract_inverted_index.attacks\nand | 159 |
| abstract_inverted_index.construction | 30 |
| abstract_inverted_index.of\nencoding | 140 |
| abstract_inverted_index.perspective, | 104 |
| abstract_inverted_index.rich\nfamily | 112 |
| abstract_inverted_index.sufficiently | 111 |
| abstract_inverted_index.well-defined | 118 |
| abstract_inverted_index.NeuraCrypt.\n | 202 |
| abstract_inverted_index.baselines\non | 168 |
| abstract_inverted_index.scheme\nbased | 72 |
| abstract_inverted_index.a\ntheoretical | 103 |
| abstract_inverted_index.and\npublishes | 93 |
| abstract_inverted_index.concerns\nhave | 20 |
| abstract_inverted_index.x-ray\nmodels. | 188 |
| abstract_inverted_index.computationally | 125 |
| abstract_inverted_index.we\ndemonstrate | 148 |
| abstract_inverted_index.patient\nprivacy | 62 |
| abstract_inverted_index.hospitals,\nusing | 179 |
| abstract_inverted_index.central\nchallenge | 11 |
| abstract_inverted_index.data-distribution. | 133 |
| abstract_inverted_index.of\nmulti-hospital | 31 |
| abstract_inverted_index.learning\nresources. | 40 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.84523721 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |