Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.09.18.558113
The neural population spiking activity recorded by intracortical brain-computer interfaces (iBCIs) contain rich structure. Current models of such spiking activity are largely prepared for individual experimental contexts, restricting data volume to that collectable within a single session and limiting the effectiveness of deep neural networks (DNNs). The purported challenge in aggregating neural spiking data is the pervasiveness of context-dependent shifts in the neural data distributions. However, large scale unsupervised pretraining by nature spans heterogeneous data, and has proven to be a fundamental recipe for successful representation learning across deep learning. We thus develop Neural Data Transformer 2 (NDT2), a spatiotemporal Transformer for neural spiking activity, and demonstrate that pretraining can leverage motor BCI datasets that span sessions, subjects, and experimental tasks. NDT2 enables rapid adaptation to novel contexts in downstream decoding tasks and opens the path to deployment of pretrained DNNs for iBCI control. Code: https://github.com/joel99/context_general_bci
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.09.18.558113
- https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdf
- OA Status
- green
- Cited By
- 18
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386948794
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386948794Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.09.18.558113Digital Object Identifier
- Title
-
Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking ActivityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-22Full publication date if available
- Authors
-
Joel Ye, Jennifer L. Collinger, Leila Wehbe, Robert A. GauntList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.09.18.558113Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdfDirect OA link when available
- Concepts
-
Computer science, Spiking neural network, Artificial neural network, Artificial intelligence, Brain–computer interface, Decoding methods, Transformer, Machine learning, Neuroscience, Electroencephalography, Psychology, Engineering, Voltage, Electrical engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 6, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386948794 |
|---|---|
| doi | https://doi.org/10.1101/2023.09.18.558113 |
| ids.doi | https://doi.org/10.1101/2023.09.18.558113 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37781630 |
| ids.openalex | https://openalex.org/W4386948794 |
| fwci | 4.74790954 |
| type | preprint |
| title | Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9993000030517578 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6704221963882446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11731999 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5941277146339417 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9067355 |
| concepts[1].display_name | Spiking neural network |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5636129975318909 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4881954789161682 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C173201364 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4681796133518219 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[4].display_name | Brain–computer interface |
| concepts[5].id | https://openalex.org/C57273362 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4522075355052948 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[5].display_name | Decoding methods |
| concepts[6].id | https://openalex.org/C66322947 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45025479793548584 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[6].display_name | Transformer |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3796611428260803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21443748474121094 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| concepts[9].id | https://openalex.org/C522805319 |
| concepts[9].level | 2 |
| concepts[9].score | 0.20228740572929382 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[9].display_name | Electroencephalography |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08324927091598511 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07028037309646606 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C165801399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[12].display_name | Voltage |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6704221963882446 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/spiking-neural-network |
| keywords[1].score | 0.5941277146339417 |
| keywords[1].display_name | Spiking neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5636129975318909 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4881954789161682 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[4].score | 0.4681796133518219 |
| keywords[4].display_name | Brain–computer interface |
| keywords[5].id | https://openalex.org/keywords/decoding-methods |
| keywords[5].score | 0.4522075355052948 |
| keywords[5].display_name | Decoding methods |
| keywords[6].id | https://openalex.org/keywords/transformer |
| keywords[6].score | 0.45025479793548584 |
| keywords[6].display_name | Transformer |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3796611428260803 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/neuroscience |
| keywords[8].score | 0.21443748474121094 |
| keywords[8].display_name | Neuroscience |
| keywords[9].id | https://openalex.org/keywords/electroencephalography |
| keywords[9].score | 0.20228740572929382 |
| keywords[9].display_name | Electroencephalography |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.08324927091598511 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.07028037309646606 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1101/2023.09.18.558113 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.09.18.558113 |
| locations[1].id | pmid:37781630 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37781630 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10541112 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10541112/pdf/nihpp-2023.09.18.558113v1.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10541112 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5032074573 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1149-6035 |
| authorships[0].author.display_name | Joel Ye |
| authorships[0].countries | IT, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210113153, https://openalex.org/I74973139 |
| authorships[0].affiliations[0].raw_affiliation_string | Neuroscience Institute, Carnegie Mellon University |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I170201317 |
| authorships[0].affiliations[1].raw_affiliation_string | Rehab Neural Engineering Labs, University of Pittsburgh |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210086114 |
| authorships[0].affiliations[2].raw_affiliation_string | Center for the Neural Basis of Cognition, Pittsburgh |
| authorships[0].institutions[0].id | https://openalex.org/I4210113153 |
| authorships[0].institutions[0].ror | https://ror.org/0240rwx68 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210113153, https://openalex.org/I4210155236 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Neuroscience Institute |
| authorships[0].institutions[1].id | https://openalex.org/I74973139 |
| authorships[0].institutions[1].ror | https://ror.org/05x2bcf33 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I74973139 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Carnegie Mellon University |
| authorships[0].institutions[2].id | https://openalex.org/I4210086114 |
| authorships[0].institutions[2].ror | https://ror.org/00jfeg660 |
| authorships[0].institutions[2].type | facility |
| authorships[0].institutions[2].lineage | https://openalex.org/I170201317, https://openalex.org/I4210086114, https://openalex.org/I74973139 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Center for the Neural Basis of Cognition |
| authorships[0].institutions[3].id | https://openalex.org/I170201317 |
| authorships[0].institutions[3].ror | https://ror.org/01an3r305 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I170201317 |
| authorships[0].institutions[3].country_code | US |
| authorships[0].institutions[3].display_name | University of Pittsburgh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joel Ye |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for the Neural Basis of Cognition, Pittsburgh, Neuroscience Institute, Carnegie Mellon University, Rehab Neural Engineering Labs, University of Pittsburgh |
| authorships[1].author.id | https://openalex.org/A5009576549 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4517-5395 |
| authorships[1].author.display_name | Jennifer L. Collinger |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Carnegie Mellon University |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I170201317 |
| authorships[1].affiliations[1].raw_affiliation_string | Rehab Neural Engineering Labs, University of Pittsburgh |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210086114 |
| authorships[1].affiliations[2].raw_affiliation_string | Center for the Neural Basis of Cognition, Pittsburgh |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I170201317 |
| authorships[1].affiliations[3].raw_affiliation_string | Department of Physical Medicine and Rehabilitation, University of Pittsburgh |
| authorships[1].affiliations[4].institution_ids | https://openalex.org/I170201317 |
| authorships[1].affiliations[4].raw_affiliation_string | Department of Bioengineering, University of Pittsburgh |
| authorships[1].institutions[0].id | https://openalex.org/I74973139 |
| authorships[1].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Carnegie Mellon University |
| authorships[1].institutions[1].id | https://openalex.org/I4210086114 |
| authorships[1].institutions[1].ror | https://ror.org/00jfeg660 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I170201317, https://openalex.org/I4210086114, https://openalex.org/I74973139 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Center for the Neural Basis of Cognition |
| authorships[1].institutions[2].id | https://openalex.org/I170201317 |
| authorships[1].institutions[2].ror | https://ror.org/01an3r305 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I170201317 |
| authorships[1].institutions[2].country_code | US |
| authorships[1].institutions[2].display_name | University of Pittsburgh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jennifer L. Collinger |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for the Neural Basis of Cognition, Pittsburgh, Department of Bioengineering, University of Pittsburgh, Department of Biomedical Engineering, Carnegie Mellon University, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Rehab Neural Engineering Labs, University of Pittsburgh |
| authorships[2].author.id | https://openalex.org/A5014896739 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8545-2062 |
| authorships[2].author.display_name | Leila Wehbe |
| authorships[2].countries | IT, US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[2].affiliations[0].raw_affiliation_string | Machine Learning Department, Carnegie Mellon University |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210113153, https://openalex.org/I74973139 |
| authorships[2].affiliations[1].raw_affiliation_string | Neuroscience Institute, Carnegie Mellon University |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210086114 |
| authorships[2].affiliations[2].raw_affiliation_string | Center for the Neural Basis of Cognition, Pittsburgh |
| authorships[2].institutions[0].id | https://openalex.org/I4210113153 |
| authorships[2].institutions[0].ror | https://ror.org/0240rwx68 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210113153, https://openalex.org/I4210155236 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | Neuroscience Institute |
| authorships[2].institutions[1].id | https://openalex.org/I74973139 |
| authorships[2].institutions[1].ror | https://ror.org/05x2bcf33 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I74973139 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Carnegie Mellon University |
| authorships[2].institutions[2].id | https://openalex.org/I4210086114 |
| authorships[2].institutions[2].ror | https://ror.org/00jfeg660 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I170201317, https://openalex.org/I4210086114, https://openalex.org/I74973139 |
| authorships[2].institutions[2].country_code | US |
| authorships[2].institutions[2].display_name | Center for the Neural Basis of Cognition |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leila Wehbe |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for the Neural Basis of Cognition, Pittsburgh, Machine Learning Department, Carnegie Mellon University, Neuroscience Institute, Carnegie Mellon University |
| authorships[3].author.id | https://openalex.org/A5077889991 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6202-5818 |
| authorships[3].author.display_name | Robert A. Gaunt |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Carnegie Mellon University |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I170201317 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Bioengineering, University of Pittsburgh |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210086114 |
| authorships[3].affiliations[2].raw_affiliation_string | Center for the Neural Basis of Cognition, Pittsburgh |
| authorships[3].affiliations[3].institution_ids | https://openalex.org/I170201317 |
| authorships[3].affiliations[3].raw_affiliation_string | Department of Physical Medicine and Rehabilitation, University of Pittsburgh |
| authorships[3].affiliations[4].institution_ids | https://openalex.org/I170201317 |
| authorships[3].affiliations[4].raw_affiliation_string | Rehab Neural Engineering Labs, University of Pittsburgh |
| authorships[3].institutions[0].id | https://openalex.org/I74973139 |
| authorships[3].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Carnegie Mellon University |
| authorships[3].institutions[1].id | https://openalex.org/I4210086114 |
| authorships[3].institutions[1].ror | https://ror.org/00jfeg660 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I170201317, https://openalex.org/I4210086114, https://openalex.org/I74973139 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Center for the Neural Basis of Cognition |
| authorships[3].institutions[2].id | https://openalex.org/I170201317 |
| authorships[3].institutions[2].ror | https://ror.org/01an3r305 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I170201317 |
| authorships[3].institutions[2].country_code | US |
| authorships[3].institutions[2].display_name | University of Pittsburgh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Robert Gaunt |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Center for the Neural Basis of Cognition, Pittsburgh, Department of Bioengineering, University of Pittsburgh, Department of Biomedical Engineering, Carnegie Mellon University, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Rehab Neural Engineering Labs, University of Pittsburgh |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W3202969339, https://openalex.org/W4237513258, https://openalex.org/W2044053727, https://openalex.org/W4411653333, https://openalex.org/W1994410349, https://openalex.org/W3177028067, https://openalex.org/W1913385466, https://openalex.org/W2914170859, https://openalex.org/W2889342546, https://openalex.org/W2015048155 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2023.09.18.558113 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.09.18.558113 |
| primary_location.id | doi:10.1101/2023.09.18.558113 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/09/22/2023.09.18.558113.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.09.18.558113 |
| publication_date | 2023-09-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3041725488, https://openalex.org/W3217655686, https://openalex.org/W4311704283, https://openalex.org/W1966537851, https://openalex.org/W2786396068, https://openalex.org/W2896846197, https://openalex.org/W2997421847, https://openalex.org/W4297341762, https://openalex.org/W4310155388, https://openalex.org/W2538079766, https://openalex.org/W4224214225, https://openalex.org/W4317678017, https://openalex.org/W2033144847, https://openalex.org/W3209750256, https://openalex.org/W3211983881, https://openalex.org/W3201531713, https://openalex.org/W3083554171, https://openalex.org/W2896457183, https://openalex.org/W4283071815, https://openalex.org/W4226090302, https://openalex.org/W4322759937, https://openalex.org/W4283455225, https://openalex.org/W3177342940, https://openalex.org/W2345279893, https://openalex.org/W2104979528, https://openalex.org/W2951777958, https://openalex.org/W3161343553, https://openalex.org/W4366725409, https://openalex.org/W3126124476, https://openalex.org/W4221161062, https://openalex.org/W2790078435, https://openalex.org/W4320016781, https://openalex.org/W4282826100, https://openalex.org/W2892541114, https://openalex.org/W4293529103, https://openalex.org/W4282813552, https://openalex.org/W4214612132, https://openalex.org/W2569707862, https://openalex.org/W2144910141, https://openalex.org/W4319231716, https://openalex.org/W4205991051, https://openalex.org/W3014488508, https://openalex.org/W4393877320, https://openalex.org/W2771318405, https://openalex.org/W3184745908, https://openalex.org/W4385570763, https://openalex.org/W3097217077, https://openalex.org/W2966617434, https://openalex.org/W3199241049, https://openalex.org/W4309228072, https://openalex.org/W2146377664, https://openalex.org/W4378602301, https://openalex.org/W2594353973, https://openalex.org/W3001279689, https://openalex.org/W3120993011, https://openalex.org/W2770306141, https://openalex.org/W2109065101, https://openalex.org/W4319265541, https://openalex.org/W2247925470, https://openalex.org/W2949893327, https://openalex.org/W4280490805, https://openalex.org/W4386084258, https://openalex.org/W4388488592, https://openalex.org/W4386091044, https://openalex.org/W4387664435 |
| referenced_works_count | 65 |
| abstract_inverted_index.2 | 97 |
| abstract_inverted_index.a | 35, 81, 99 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.be | 80 |
| abstract_inverted_index.by | 7, 71 |
| abstract_inverted_index.in | 50, 61, 129 |
| abstract_inverted_index.is | 55 |
| abstract_inverted_index.of | 17, 42, 58, 139 |
| abstract_inverted_index.to | 31, 79, 126, 137 |
| abstract_inverted_index.BCI | 113 |
| abstract_inverted_index.The | 1, 47 |
| abstract_inverted_index.and | 38, 76, 106, 119, 133 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.for | 24, 84, 102, 142 |
| abstract_inverted_index.has | 77 |
| abstract_inverted_index.the | 40, 56, 62, 135 |
| abstract_inverted_index.DNNs | 141 |
| abstract_inverted_index.Data | 95 |
| abstract_inverted_index.NDT2 | 122 |
| abstract_inverted_index.data | 29, 54, 64 |
| abstract_inverted_index.deep | 43, 89 |
| abstract_inverted_index.iBCI | 143 |
| abstract_inverted_index.path | 136 |
| abstract_inverted_index.rich | 13 |
| abstract_inverted_index.span | 116 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.that | 32, 108, 115 |
| abstract_inverted_index.thus | 92 |
| abstract_inverted_index.Code: | 145 |
| abstract_inverted_index.data, | 75 |
| abstract_inverted_index.large | 67 |
| abstract_inverted_index.motor | 112 |
| abstract_inverted_index.novel | 127 |
| abstract_inverted_index.opens | 134 |
| abstract_inverted_index.rapid | 124 |
| abstract_inverted_index.scale | 68 |
| abstract_inverted_index.spans | 73 |
| abstract_inverted_index.tasks | 132 |
| abstract_inverted_index.Neural | 94 |
| abstract_inverted_index.across | 88 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.nature | 72 |
| abstract_inverted_index.neural | 2, 44, 52, 63, 103 |
| abstract_inverted_index.proven | 78 |
| abstract_inverted_index.recipe | 83 |
| abstract_inverted_index.shifts | 60 |
| abstract_inverted_index.single | 36 |
| abstract_inverted_index.tasks. | 121 |
| abstract_inverted_index.volume | 30 |
| abstract_inverted_index.within | 34 |
| abstract_inverted_index.(DNNs). | 46 |
| abstract_inverted_index.(NDT2), | 98 |
| abstract_inverted_index.(iBCIs) | 11 |
| abstract_inverted_index.Current | 15 |
| abstract_inverted_index.contain | 12 |
| abstract_inverted_index.develop | 93 |
| abstract_inverted_index.enables | 123 |
| abstract_inverted_index.largely | 22 |
| abstract_inverted_index.session | 37 |
| abstract_inverted_index.spiking | 4, 19, 53, 104 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 66 |
| abstract_inverted_index.activity | 5, 20 |
| abstract_inverted_index.contexts | 128 |
| abstract_inverted_index.control. | 144 |
| abstract_inverted_index.datasets | 114 |
| abstract_inverted_index.decoding | 131 |
| abstract_inverted_index.learning | 87 |
| abstract_inverted_index.leverage | 111 |
| abstract_inverted_index.limiting | 39 |
| abstract_inverted_index.networks | 45 |
| abstract_inverted_index.prepared | 23 |
| abstract_inverted_index.recorded | 6 |
| abstract_inverted_index.activity, | 105 |
| abstract_inverted_index.challenge | 49 |
| abstract_inverted_index.contexts, | 27 |
| abstract_inverted_index.learning. | 90 |
| abstract_inverted_index.purported | 48 |
| abstract_inverted_index.sessions, | 117 |
| abstract_inverted_index.subjects, | 118 |
| abstract_inverted_index.adaptation | 125 |
| abstract_inverted_index.deployment | 138 |
| abstract_inverted_index.downstream | 130 |
| abstract_inverted_index.individual | 25 |
| abstract_inverted_index.interfaces | 10 |
| abstract_inverted_index.population | 3 |
| abstract_inverted_index.pretrained | 140 |
| abstract_inverted_index.structure. | 14 |
| abstract_inverted_index.successful | 85 |
| abstract_inverted_index.Transformer | 96, 101 |
| abstract_inverted_index.aggregating | 51 |
| abstract_inverted_index.collectable | 33 |
| abstract_inverted_index.demonstrate | 107 |
| abstract_inverted_index.fundamental | 82 |
| abstract_inverted_index.pretraining | 70, 109 |
| abstract_inverted_index.restricting | 28 |
| abstract_inverted_index.experimental | 26, 120 |
| abstract_inverted_index.unsupervised | 69 |
| abstract_inverted_index.effectiveness | 41 |
| abstract_inverted_index.heterogeneous | 74 |
| abstract_inverted_index.intracortical | 8 |
| abstract_inverted_index.pervasiveness | 57 |
| abstract_inverted_index.brain-computer | 9 |
| abstract_inverted_index.distributions. | 65 |
| abstract_inverted_index.representation | 86 |
| abstract_inverted_index.spatiotemporal | 100 |
| abstract_inverted_index.context-dependent | 59 |
| abstract_inverted_index.https://github.com/joel99/context_general_bci | 146 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5077889991 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I170201317, https://openalex.org/I4210086114, https://openalex.org/I74973139 |
| citation_normalized_percentile.value | 0.94113187 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |