Neural Likelihoods for Multi-Output Gaussian Processes Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1905.13697
We construct flexible likelihoods for multi-output Gaussian process models that leverage neural networks as components. We make use of sparse variational inference methods to enable scalable approximate inference for the resulting class of models. An attractive feature of these models is that they can admit analytic predictive means even when the likelihood is non-linear and the predictive distributions are non-Gaussian. We validate the modeling potential of these models in a variety of experiments in both the supervised and unsupervised setting. We demonstrate that the flexibility of these `neural' likelihoods can improve prediction quality as compared to simpler Gaussian process models and that neural likelihoods can be readily combined with a variety of underlying Gaussian process models, including deep Gaussian processes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1905.13697
- https://arxiv.org/pdf/1905.13697
- OA Status
- green
- Cited By
- 2
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2947783661
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2947783661Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1905.13697Digital Object Identifier
- Title
-
Neural Likelihoods for Multi-Output Gaussian ProcessesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-31Full publication date if available
- Authors
-
Martin Jankowiak, Jacob R. GardnerList of authors in order
- Landing page
-
https://arxiv.org/abs/1905.13697Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1905.13697Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1905.13697Direct OA link when available
- Concepts
-
Gaussian, Computer science, Gaussian process, Artificial intelligence, Pattern recognition (psychology), Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2947783661 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1905.13697 |
| ids.doi | https://doi.org/10.48550/arxiv.1905.13697 |
| ids.mag | 2947783661 |
| ids.openalex | https://openalex.org/W2947783661 |
| fwci | |
| type | preprint |
| title | Neural Likelihoods for Multi-Output Gaussian Processes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T11236 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9815999865531921 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Control Systems and Identification |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.955299973487854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C163716315 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5346096754074097 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[0].display_name | Gaussian |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4909070134162903 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C61326573 |
| concepts[2].level | 3 |
| concepts[2].score | 0.45634469389915466 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[2].display_name | Gaussian process |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3948622941970825 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.3415316939353943 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.14773306250572205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C62520636 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[6].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/gaussian |
| keywords[0].score | 0.5346096754074097 |
| keywords[0].display_name | Gaussian |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4909070134162903 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/gaussian-process |
| keywords[2].score | 0.45634469389915466 |
| keywords[2].display_name | Gaussian process |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3948622941970825 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.3415316939353943 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.14773306250572205 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1905.13697 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1905.13697 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1905.13697 |
| locations[1].id | doi:10.48550/arxiv.1905.13697 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1905.13697 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5054350362 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1724-0436 |
| authorships[0].author.display_name | Martin Jankowiak |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Martin Jankowiak |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072585411 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1897-8384 |
| authorships[1].author.display_name | Jacob R. Gardner |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jacob R. Gardner |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1905.13697 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neural Likelihoods for Multi-Output Gaussian Processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W1964286703, https://openalex.org/W2169866437 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1905.13697 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1905.13697 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1905.13697 |
| primary_location.id | pmh:oai:arXiv.org:1905.13697 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1905.13697 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1905.13697 |
| publication_date | 2019-05-31 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1522301498, https://openalex.org/W2119595900, https://openalex.org/W2143672530, https://openalex.org/W2899771611, https://openalex.org/W2964135722, https://openalex.org/W1909320841, https://openalex.org/W137285897, https://openalex.org/W2244749007, https://openalex.org/W2116059849, https://openalex.org/W2893995718, https://openalex.org/W1497675750, https://openalex.org/W2108677974, https://openalex.org/W2251230758, https://openalex.org/W2963190151, https://openalex.org/W2125650133, https://openalex.org/W2962875063, https://openalex.org/W2035141480, https://openalex.org/W2805420338, https://openalex.org/W2146611938, https://openalex.org/W2951266961, https://openalex.org/W2171305756, https://openalex.org/W2804602357, https://openalex.org/W2185068657, https://openalex.org/W2952677397, https://openalex.org/W2951004968, https://openalex.org/W2158782408, https://openalex.org/W1502922572, https://openalex.org/W2951249948, https://openalex.org/W2095705004, https://openalex.org/W2178987369, https://openalex.org/W2179793346, https://openalex.org/W2134477639, https://openalex.org/W2125849100, https://openalex.org/W1719489212, https://openalex.org/W2963827215, https://openalex.org/W2899426887, https://openalex.org/W1870250857, https://openalex.org/W2728139190, https://openalex.org/W2963717915, https://openalex.org/W2167503371, https://openalex.org/W2622604310, https://openalex.org/W2122377431, https://openalex.org/W2963711523 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 69, 109 |
| abstract_inverted_index.An | 34 |
| abstract_inverted_index.We | 0, 15, 60, 80 |
| abstract_inverted_index.as | 13, 93 |
| abstract_inverted_index.be | 105 |
| abstract_inverted_index.in | 68, 73 |
| abstract_inverted_index.is | 40, 52 |
| abstract_inverted_index.of | 18, 32, 37, 65, 71, 85, 111 |
| abstract_inverted_index.to | 23, 95 |
| abstract_inverted_index.and | 54, 77, 100 |
| abstract_inverted_index.are | 58 |
| abstract_inverted_index.can | 43, 89, 104 |
| abstract_inverted_index.for | 4, 28 |
| abstract_inverted_index.the | 29, 50, 55, 62, 75, 83 |
| abstract_inverted_index.use | 17 |
| abstract_inverted_index.both | 74 |
| abstract_inverted_index.deep | 117 |
| abstract_inverted_index.even | 48 |
| abstract_inverted_index.make | 16 |
| abstract_inverted_index.that | 9, 41, 82, 101 |
| abstract_inverted_index.they | 42 |
| abstract_inverted_index.when | 49 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.admit | 44 |
| abstract_inverted_index.class | 31 |
| abstract_inverted_index.means | 47 |
| abstract_inverted_index.these | 38, 66, 86 |
| abstract_inverted_index.enable | 24 |
| abstract_inverted_index.models | 8, 39, 67, 99 |
| abstract_inverted_index.neural | 11, 102 |
| abstract_inverted_index.sparse | 19 |
| abstract_inverted_index.feature | 36 |
| abstract_inverted_index.improve | 90 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.models, | 115 |
| abstract_inverted_index.models. | 33 |
| abstract_inverted_index.process | 7, 98, 114 |
| abstract_inverted_index.quality | 92 |
| abstract_inverted_index.readily | 106 |
| abstract_inverted_index.simpler | 96 |
| abstract_inverted_index.variety | 70, 110 |
| abstract_inverted_index.Gaussian | 6, 97, 113, 118 |
| abstract_inverted_index.`neural' | 87 |
| abstract_inverted_index.analytic | 45 |
| abstract_inverted_index.combined | 107 |
| abstract_inverted_index.compared | 94 |
| abstract_inverted_index.flexible | 2 |
| abstract_inverted_index.leverage | 10 |
| abstract_inverted_index.modeling | 63 |
| abstract_inverted_index.networks | 12 |
| abstract_inverted_index.scalable | 25 |
| abstract_inverted_index.setting. | 79 |
| abstract_inverted_index.validate | 61 |
| abstract_inverted_index.construct | 1 |
| abstract_inverted_index.including | 116 |
| abstract_inverted_index.inference | 21, 27 |
| abstract_inverted_index.potential | 64 |
| abstract_inverted_index.resulting | 30 |
| abstract_inverted_index.attractive | 35 |
| abstract_inverted_index.likelihood | 51 |
| abstract_inverted_index.non-linear | 53 |
| abstract_inverted_index.prediction | 91 |
| abstract_inverted_index.predictive | 46, 56 |
| abstract_inverted_index.processes. | 119 |
| abstract_inverted_index.supervised | 76 |
| abstract_inverted_index.underlying | 112 |
| abstract_inverted_index.approximate | 26 |
| abstract_inverted_index.components. | 14 |
| abstract_inverted_index.demonstrate | 81 |
| abstract_inverted_index.experiments | 72 |
| abstract_inverted_index.flexibility | 84 |
| abstract_inverted_index.likelihoods | 3, 88, 103 |
| abstract_inverted_index.variational | 20 |
| abstract_inverted_index.multi-output | 5 |
| abstract_inverted_index.unsupervised | 78 |
| abstract_inverted_index.distributions | 57 |
| abstract_inverted_index.non-Gaussian. | 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |