Neural network-based performance prediction of marine UHPC with coarse aggregates Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fmats.2025.1550991
In order to improve bearing capacity and service life of marine structure using marine UHPC with coarse aggregate (UHPC-CA), it is necessary to reasonably predict the performance of UHPC-CA. The performance of UHPC-CA was predicted in this paper based on five prediction models: multiple linear regression, multiple nonlinear regression, traditional neural network (T-BP), principal component approach neural network (PCA-BP), and improved neural network based on genetic algorithm (GA-BP). Seven influencing factors were taken as input, such as coarse aggregate type, coarse aggregate content, steel fiber type, steel fiber content, water-binder ratio, rubber particle sand replacement rate and curing system. Mechanical and long-term performance of UHPC-CA were taken as outputs. The results show that artificial neural network can be applied to predict performance of UHPC-CA with multi-parameter input and multi-index output. In terms of the prediction accuracy of mechanical properties and long-term performance of UHPC-CA, the order is GA-BP > PCA-BP > T-BP > multiple nonlinear regression > multiple linear regression. The GA-BP neural network has the highest goodness of fit for the prediction of mechanical properties and long-term performance of UHPC-CA, which is 93.87%, 37.34%, 5.13% and 3.21% averagely higher than that of multiple linear regression, multiple nonlinear regression, T-BP and PCA-BP, respectively. Furthermore, GA-BP neural network has the lowest error index for each performance prediction. MAE, MSE and RMSE are 18.13%, 77.26% and 52.31% lower than PCA-BP on average.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmats.2025.1550991
- https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdf
- OA Status
- gold
- Cited By
- 1
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408040642
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408040642Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmats.2025.1550991Digital Object Identifier
- Title
-
Neural network-based performance prediction of marine UHPC with coarse aggregatesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-28Full publication date if available
- Authors
-
Yunhao Luan, Denise J. Cai, Biao Wang, Changqing Luo, Anni Wang, Chao Wang, Dezeng Kong, Chaohui Xu, Shipei HuangList of authors in order
- Landing page
-
https://doi.org/10.3389/fmats.2025.1550991Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdfDirect OA link when available
- Concepts
-
Artificial neural network, Materials science, Computer science, Geology, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408040642 |
|---|---|
| doi | https://doi.org/10.3389/fmats.2025.1550991 |
| ids.doi | https://doi.org/10.3389/fmats.2025.1550991 |
| ids.openalex | https://openalex.org/W4408040642 |
| fwci | 2.39630643 |
| type | article |
| title | Neural network-based performance prediction of marine UHPC with coarse aggregates |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10687 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9901000261306763 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Innovative concrete reinforcement materials |
| topics[1].id | https://openalex.org/T12152 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Properties and Behavior |
| topics[2].id | https://openalex.org/T10033 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9873999953269958 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Concrete and Cement Materials Research |
| is_xpac | False |
| apc_list.value | 3225 |
| apc_list.currency | USD |
| apc_list.value_usd | 3225 |
| apc_paid.value | 3225 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3225 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5186671018600464 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C192562407 |
| concepts[1].level | 0 |
| concepts[1].score | 0.42690667510032654 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[1].display_name | Materials science |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.35211628675460815 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C127313418 |
| concepts[3].level | 0 |
| concepts[3].score | 0.32386255264282227 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[3].display_name | Geology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2671332359313965 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.5186671018600464 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/materials-science |
| keywords[1].score | 0.42690667510032654 |
| keywords[1].display_name | Materials science |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.35211628675460815 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/geology |
| keywords[3].score | 0.32386255264282227 |
| keywords[3].display_name | Geology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2671332359313965 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3389/fmats.2025.1550991 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595389538 |
| locations[0].source.issn | 2296-8016 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-8016 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Materials |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Materials |
| locations[0].landing_page_url | https://doi.org/10.3389/fmats.2025.1550991 |
| locations[1].id | pmh:oai:doaj.org/article:5bb2faa1832b48bd8644ddb20932c70f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Materials, Vol 12 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/5bb2faa1832b48bd8644ddb20932c70f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5116456175 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yunhao Luan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yunhao Luan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075957905 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7729-0523 |
| authorships[1].author.display_name | Denise J. Cai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dongbo Cai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100439502 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1089-1049 |
| authorships[2].author.display_name | Biao Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Deming Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5041541617 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6776-7519 |
| authorships[3].author.display_name | Changqing Luo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Changqing Luo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067601478 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Anni Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anni Wang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5103769209 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2427-1940 |
| authorships[5].author.display_name | Chao Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chao Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5110402007 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Dezeng Kong |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Degao Kong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5044945662 |
| authorships[7].author.orcid | https://orcid.org/0009-0002-1814-5016 |
| authorships[7].author.display_name | Chaohui Xu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chaohui Xu |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5054240794 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4117-4416 |
| authorships[8].author.display_name | Shipei Huang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Sining Huang |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neural network-based performance prediction of marine UHPC with coarse aggregates |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10687 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9901000261306763 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Innovative concrete reinforcement materials |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2898370298, https://openalex.org/W2137437058 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fmats.2025.1550991 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595389538 |
| best_oa_location.source.issn | 2296-8016 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-8016 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Materials |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmats.2025.1550991 |
| primary_location.id | doi:10.3389/fmats.2025.1550991 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595389538 |
| primary_location.source.issn | 2296-8016 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-8016 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Materials |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2025.1550991/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Materials |
| primary_location.landing_page_url | https://doi.org/10.3389/fmats.2025.1550991 |
| publication_date | 2025-02-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2944118576, https://openalex.org/W2070804523, https://openalex.org/W3115196460, https://openalex.org/W2902630892, https://openalex.org/W3194311761, https://openalex.org/W4403500622, https://openalex.org/W4205282164, https://openalex.org/W2037642535, https://openalex.org/W2891038508, https://openalex.org/W4400320772, https://openalex.org/W2105443690, https://openalex.org/W2910351607, https://openalex.org/W2061061894, https://openalex.org/W2062848325, https://openalex.org/W4380360474, https://openalex.org/W2188581537, https://openalex.org/W3021671912, https://openalex.org/W4205841681, https://openalex.org/W1997368340, https://openalex.org/W3199423611, https://openalex.org/W1981860795, https://openalex.org/W2031275022, https://openalex.org/W2753359019, https://openalex.org/W2050524161, https://openalex.org/W2060497759, https://openalex.org/W2054904072, https://openalex.org/W2329476579, https://openalex.org/W3189215293, https://openalex.org/W4391116192, https://openalex.org/W4387630304, https://openalex.org/W2242157312, https://openalex.org/W3030700427, https://openalex.org/W2779386887, https://openalex.org/W6722772486, https://openalex.org/W4386392212, https://openalex.org/W4221042171, https://openalex.org/W6864877630, https://openalex.org/W4309576579, https://openalex.org/W2944436518, https://openalex.org/W43382659, https://openalex.org/W4394834635, https://openalex.org/W4246252528, https://openalex.org/W2124776405 |
| referenced_works_count | 43 |
| abstract_inverted_index.In | 0, 130 |
| abstract_inverted_index.as | 73, 76, 107 |
| abstract_inverted_index.be | 117 |
| abstract_inverted_index.in | 35 |
| abstract_inverted_index.is | 20, 146, 182 |
| abstract_inverted_index.it | 19 |
| abstract_inverted_index.of | 9, 27, 31, 103, 122, 132, 136, 142, 168, 173, 179, 192 |
| abstract_inverted_index.on | 39, 64, 228 |
| abstract_inverted_index.to | 2, 22, 119 |
| abstract_inverted_index.MSE | 217 |
| abstract_inverted_index.The | 29, 109, 160 |
| abstract_inverted_index.and | 6, 59, 96, 100, 127, 139, 176, 186, 200, 218, 223 |
| abstract_inverted_index.are | 220 |
| abstract_inverted_index.can | 116 |
| abstract_inverted_index.fit | 169 |
| abstract_inverted_index.for | 170, 212 |
| abstract_inverted_index.has | 164, 207 |
| abstract_inverted_index.the | 25, 133, 144, 165, 171, 208 |
| abstract_inverted_index.was | 33 |
| abstract_inverted_index.MAE, | 216 |
| abstract_inverted_index.RMSE | 219 |
| abstract_inverted_index.T-BP | 151, 199 |
| abstract_inverted_index.UHPC | 14 |
| abstract_inverted_index.each | 213 |
| abstract_inverted_index.five | 40 |
| abstract_inverted_index.life | 8 |
| abstract_inverted_index.rate | 95 |
| abstract_inverted_index.sand | 93 |
| abstract_inverted_index.show | 111 |
| abstract_inverted_index.such | 75 |
| abstract_inverted_index.than | 190, 226 |
| abstract_inverted_index.that | 112, 191 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.were | 71, 105 |
| abstract_inverted_index.with | 15, 124 |
| abstract_inverted_index.3.21% | 187 |
| abstract_inverted_index.5.13% | 185 |
| abstract_inverted_index.GA-BP | 147, 161, 204 |
| abstract_inverted_index.Seven | 68 |
| abstract_inverted_index.based | 38, 63 |
| abstract_inverted_index.error | 210 |
| abstract_inverted_index.fiber | 84, 87 |
| abstract_inverted_index.index | 211 |
| abstract_inverted_index.input | 126 |
| abstract_inverted_index.lower | 225 |
| abstract_inverted_index.order | 1, 145 |
| abstract_inverted_index.paper | 37 |
| abstract_inverted_index.steel | 83, 86 |
| abstract_inverted_index.taken | 72, 106 |
| abstract_inverted_index.terms | 131 |
| abstract_inverted_index.type, | 79, 85 |
| abstract_inverted_index.using | 12 |
| abstract_inverted_index.which | 181 |
| abstract_inverted_index.52.31% | 224 |
| abstract_inverted_index.77.26% | 222 |
| abstract_inverted_index.PCA-BP | 149, 227 |
| abstract_inverted_index.coarse | 16, 77, 80 |
| abstract_inverted_index.curing | 97 |
| abstract_inverted_index.higher | 189 |
| abstract_inverted_index.input, | 74 |
| abstract_inverted_index.linear | 44, 158, 194 |
| abstract_inverted_index.lowest | 209 |
| abstract_inverted_index.marine | 10, 13 |
| abstract_inverted_index.neural | 50, 56, 61, 114, 162, 205 |
| abstract_inverted_index.ratio, | 90 |
| abstract_inverted_index.rubber | 91 |
| abstract_inverted_index.(T-BP), | 52 |
| abstract_inverted_index.18.13%, | 221 |
| abstract_inverted_index.37.34%, | 184 |
| abstract_inverted_index.93.87%, | 183 |
| abstract_inverted_index.PCA-BP, | 201 |
| abstract_inverted_index.UHPC-CA | 32, 104, 123 |
| abstract_inverted_index.applied | 118 |
| abstract_inverted_index.bearing | 4 |
| abstract_inverted_index.factors | 70 |
| abstract_inverted_index.genetic | 65 |
| abstract_inverted_index.highest | 166 |
| abstract_inverted_index.improve | 3 |
| abstract_inverted_index.models: | 42 |
| abstract_inverted_index.network | 51, 57, 62, 115, 163, 206 |
| abstract_inverted_index.output. | 129 |
| abstract_inverted_index.predict | 24, 120 |
| abstract_inverted_index.results | 110 |
| abstract_inverted_index.service | 7 |
| abstract_inverted_index.system. | 98 |
| abstract_inverted_index.> | 148, 150, 152, 156 |
| abstract_inverted_index.(GA-BP). | 67 |
| abstract_inverted_index.UHPC-CA, | 143, 180 |
| abstract_inverted_index.UHPC-CA. | 28 |
| abstract_inverted_index.accuracy | 135 |
| abstract_inverted_index.approach | 55 |
| abstract_inverted_index.average. | 229 |
| abstract_inverted_index.capacity | 5 |
| abstract_inverted_index.content, | 82, 88 |
| abstract_inverted_index.goodness | 167 |
| abstract_inverted_index.improved | 60 |
| abstract_inverted_index.multiple | 43, 46, 153, 157, 193, 196 |
| abstract_inverted_index.outputs. | 108 |
| abstract_inverted_index.particle | 92 |
| abstract_inverted_index.(PCA-BP), | 58 |
| abstract_inverted_index.aggregate | 17, 78, 81 |
| abstract_inverted_index.algorithm | 66 |
| abstract_inverted_index.averagely | 188 |
| abstract_inverted_index.component | 54 |
| abstract_inverted_index.long-term | 101, 140, 177 |
| abstract_inverted_index.necessary | 21 |
| abstract_inverted_index.nonlinear | 47, 154, 197 |
| abstract_inverted_index.predicted | 34 |
| abstract_inverted_index.principal | 53 |
| abstract_inverted_index.structure | 11 |
| abstract_inverted_index.(UHPC-CA), | 18 |
| abstract_inverted_index.Mechanical | 99 |
| abstract_inverted_index.artificial | 113 |
| abstract_inverted_index.mechanical | 137, 174 |
| abstract_inverted_index.prediction | 41, 134, 172 |
| abstract_inverted_index.properties | 138, 175 |
| abstract_inverted_index.reasonably | 23 |
| abstract_inverted_index.regression | 155 |
| abstract_inverted_index.influencing | 69 |
| abstract_inverted_index.multi-index | 128 |
| abstract_inverted_index.performance | 26, 30, 102, 121, 141, 178, 214 |
| abstract_inverted_index.prediction. | 215 |
| abstract_inverted_index.regression, | 45, 48, 195, 198 |
| abstract_inverted_index.regression. | 159 |
| abstract_inverted_index.replacement | 94 |
| abstract_inverted_index.traditional | 49 |
| abstract_inverted_index.Furthermore, | 203 |
| abstract_inverted_index.water-binder | 89 |
| abstract_inverted_index.respectively. | 202 |
| abstract_inverted_index.multi-parameter | 125 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.76969582 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |