Neural network enhanced cross entropy benchmark for monitored circuits Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/ae1655
We explore the interplay of quantum computing and machine learning to advance experimental protocols for observing measurement-induced phase transitions (MIPTs) in quantum devices. In particular, we focus on trapped ion monitored circuits and apply the cross entropy benchmark recently introduced by Li et al (2023 Phys. Rev. Lett. 130 220404), which can mitigate the post-selection problem. By doing so, we reduce the number of projective measurements—the sample complexity—required per random circuit realization, which is a critical limiting resource in real devices. Since these projective measurement outcomes form a classical probability distribution, they are suitable for learning with a standard machine learning generative model. In this paper, we use a recurrent neural network to learn a representation of the measurement record for a native trapped-ion MIPT, and show that using this generative model can substantially reduce the number of measurements required to accurately estimate the cross entropy. This illustrates the potential of combining quantum computing and machine learning to overcome practical challenges in realizing quantum experiments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/ae1655
- OA Status
- gold
- References
- 57
- OpenAlex ID
- https://openalex.org/W4415449377
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415449377Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/ae1655Digital Object Identifier
- Title
-
Neural network enhanced cross entropy benchmark for monitored circuitsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-22Full publication date if available
- Authors
-
Yangrui Hu, Yi Hong Teoh, William Witczak‐Krempa, Roger G. MelkoList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/ae1655Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/2632-2153/ae1655Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
57Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415449377 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/ae1655 |
| ids.doi | https://doi.org/10.1088/2632-2153/ae1655 |
| ids.openalex | https://openalex.org/W4415449377 |
| fwci | 0.0 |
| type | article |
| title | Neural network enhanced cross entropy benchmark for monitored circuits |
| biblio.issue | 4 |
| biblio.volume | 6 |
| biblio.last_page | 045030 |
| biblio.first_page | 045030 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9423999786376953 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9311000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/ae1655 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/ae1655 |
| locations[1].id | pmh:oai:doaj.org/article:bca7443198794284bbcb4f8bf0dc535f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Machine Learning: Science and Technology, Vol 6, Iss 4, p 045030 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/bca7443198794284bbcb4f8bf0dc535f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5068345398 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3548-8574 |
| authorships[0].author.display_name | Yangrui Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yangrui Hu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042683074 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0692-3327 |
| authorships[1].author.display_name | Yi Hong Teoh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yi Hong Teoh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016488881 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2350-2583 |
| authorships[2].author.display_name | William Witczak‐Krempa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | William Witczak-Krempa |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091069084 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5505-8176 |
| authorships[3].author.display_name | Roger G. Melko |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Roger G Melko |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/2632-2153/ae1655 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | Neural network enhanced cross entropy benchmark for monitored circuits |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9423999786376953 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/2632-2153/ae1655 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/ae1655 |
| primary_location.id | doi:10.1088/2632-2153/ae1655 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/ae1655 |
| publication_date | 2025-10-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3013685828, https://openalex.org/W4391105010, https://openalex.org/W2898121159, https://openalex.org/W2944084836, https://openalex.org/W2896854735, https://openalex.org/W2997957343, https://openalex.org/W3033312235, https://openalex.org/W3021177691, https://openalex.org/W3050945359, https://openalex.org/W3216562638, https://openalex.org/W4321210970, https://openalex.org/W4379015738, https://openalex.org/W2886483748, https://openalex.org/W2886712022, https://openalex.org/W4226066309, https://openalex.org/W3165381633, https://openalex.org/W2913031193, https://openalex.org/W2986209554, https://openalex.org/W3186107346, https://openalex.org/W3106722198, https://openalex.org/W4385954927, https://openalex.org/W4404041122, https://openalex.org/W3043723517, https://openalex.org/W2945488351, https://openalex.org/W4226338262, https://openalex.org/W2888053895, https://openalex.org/W2969894439, https://openalex.org/W2967300259, https://openalex.org/W3199634743, https://openalex.org/W4293171638, https://openalex.org/W4403423003, https://openalex.org/W4281651499, https://openalex.org/W2170858670, https://openalex.org/W3016939811, https://openalex.org/W2032610839, https://openalex.org/W2038591556, https://openalex.org/W2949253647, https://openalex.org/W3147660836, https://openalex.org/W2415710521, https://openalex.org/W2994877072, https://openalex.org/W2091465285, https://openalex.org/W3142599207, https://openalex.org/W4379878597, https://openalex.org/W3097070339, https://openalex.org/W3134336374, https://openalex.org/W3208869263, https://openalex.org/W4377291932, https://openalex.org/W4319601507, https://openalex.org/W3171663017, https://openalex.org/W3124127657, https://openalex.org/W2336871513, https://openalex.org/W4211090409, https://openalex.org/W3035785882, https://openalex.org/W2964199361, https://openalex.org/W2969500900, https://openalex.org/W4321491582, https://openalex.org/W4392682060 |
| referenced_works_count | 57 |
| abstract_inverted_index.a | 75, 88, 98, 109, 115, 122 |
| abstract_inverted_index.By | 57 |
| abstract_inverted_index.In | 24, 104 |
| abstract_inverted_index.Li | 42 |
| abstract_inverted_index.We | 1 |
| abstract_inverted_index.al | 44 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.et | 43 |
| abstract_inverted_index.in | 21, 79, 162 |
| abstract_inverted_index.is | 74 |
| abstract_inverted_index.of | 5, 64, 117, 138, 151 |
| abstract_inverted_index.on | 28 |
| abstract_inverted_index.to | 11, 113, 141, 158 |
| abstract_inverted_index.we | 26, 60, 107 |
| abstract_inverted_index.130 | 49 |
| abstract_inverted_index.and | 8, 33, 126, 155 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.can | 52, 133 |
| abstract_inverted_index.for | 15, 95, 121 |
| abstract_inverted_index.ion | 30 |
| abstract_inverted_index.per | 69 |
| abstract_inverted_index.so, | 59 |
| abstract_inverted_index.the | 3, 35, 54, 62, 118, 136, 144, 149 |
| abstract_inverted_index.use | 108 |
| abstract_inverted_index.Rev. | 47 |
| abstract_inverted_index.This | 147 |
| abstract_inverted_index.form | 87 |
| abstract_inverted_index.real | 80 |
| abstract_inverted_index.show | 127 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.they | 92 |
| abstract_inverted_index.this | 105, 130 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.(2023 | 45 |
| abstract_inverted_index.Lett. | 48 |
| abstract_inverted_index.MIPT, | 125 |
| abstract_inverted_index.Phys. | 46 |
| abstract_inverted_index.Since | 82 |
| abstract_inverted_index.apply | 34 |
| abstract_inverted_index.cross | 36, 145 |
| abstract_inverted_index.doing | 58 |
| abstract_inverted_index.focus | 27 |
| abstract_inverted_index.learn | 114 |
| abstract_inverted_index.model | 132 |
| abstract_inverted_index.phase | 18 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.using | 129 |
| abstract_inverted_index.which | 51, 73 |
| abstract_inverted_index.model. | 103 |
| abstract_inverted_index.native | 123 |
| abstract_inverted_index.neural | 111 |
| abstract_inverted_index.number | 63, 137 |
| abstract_inverted_index.paper, | 106 |
| abstract_inverted_index.random | 70 |
| abstract_inverted_index.record | 120 |
| abstract_inverted_index.reduce | 61, 135 |
| abstract_inverted_index.sample | 67 |
| abstract_inverted_index.(MIPTs) | 20 |
| abstract_inverted_index.advance | 12 |
| abstract_inverted_index.circuit | 71 |
| abstract_inverted_index.entropy | 37 |
| abstract_inverted_index.explore | 2 |
| abstract_inverted_index.machine | 9, 100, 156 |
| abstract_inverted_index.network | 112 |
| abstract_inverted_index.quantum | 6, 22, 153, 164 |
| abstract_inverted_index.trapped | 29 |
| abstract_inverted_index.220404), | 50 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.circuits | 32 |
| abstract_inverted_index.critical | 76 |
| abstract_inverted_index.devices. | 23, 81 |
| abstract_inverted_index.entropy. | 146 |
| abstract_inverted_index.estimate | 143 |
| abstract_inverted_index.learning | 10, 96, 101, 157 |
| abstract_inverted_index.limiting | 77 |
| abstract_inverted_index.mitigate | 53 |
| abstract_inverted_index.outcomes | 86 |
| abstract_inverted_index.overcome | 159 |
| abstract_inverted_index.problem. | 56 |
| abstract_inverted_index.recently | 39 |
| abstract_inverted_index.required | 140 |
| abstract_inverted_index.resource | 78 |
| abstract_inverted_index.standard | 99 |
| abstract_inverted_index.suitable | 94 |
| abstract_inverted_index.benchmark | 38 |
| abstract_inverted_index.classical | 89 |
| abstract_inverted_index.combining | 152 |
| abstract_inverted_index.computing | 7, 154 |
| abstract_inverted_index.interplay | 4 |
| abstract_inverted_index.monitored | 31 |
| abstract_inverted_index.observing | 16 |
| abstract_inverted_index.potential | 150 |
| abstract_inverted_index.practical | 160 |
| abstract_inverted_index.protocols | 14 |
| abstract_inverted_index.realizing | 163 |
| abstract_inverted_index.recurrent | 110 |
| abstract_inverted_index.accurately | 142 |
| abstract_inverted_index.challenges | 161 |
| abstract_inverted_index.generative | 102, 131 |
| abstract_inverted_index.introduced | 40 |
| abstract_inverted_index.projective | 65, 84 |
| abstract_inverted_index.illustrates | 148 |
| abstract_inverted_index.measurement | 85, 119 |
| abstract_inverted_index.particular, | 25 |
| abstract_inverted_index.probability | 90 |
| abstract_inverted_index.transitions | 19 |
| abstract_inverted_index.trapped-ion | 124 |
| abstract_inverted_index.experimental | 13 |
| abstract_inverted_index.experiments. | 165 |
| abstract_inverted_index.measurements | 139 |
| abstract_inverted_index.realization, | 72 |
| abstract_inverted_index.distribution, | 91 |
| abstract_inverted_index.substantially | 134 |
| abstract_inverted_index.post-selection | 55 |
| abstract_inverted_index.representation | 116 |
| abstract_inverted_index.measurements—the | 66 |
| abstract_inverted_index.measurement-induced | 17 |
| abstract_inverted_index.complexity—required | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.66630755 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |