Neuro-3D: Towards 3D Visual Decoding from EEG Signals Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.12248
Human's perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of neural dynamics enriched with complex visual cues. To provide the essential benchmark, we first present EEG-3D, a pioneering dataset featuring multimodal analysis data and extensive EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images. Furthermore, we propose Neuro-3D, a 3D visual decoding framework based on EEG signals. This framework adaptively integrates EEG features derived from static and dynamic stimuli to learn complementary and robust neural representations, which are subsequently utilized to recover both the shape and color of 3D objects through the proposed diffusion-based colored point cloud decoder. To the best of our knowledge, we are the first to explore EEG-based 3D visual decoding. Experiments indicate that Neuro-3D not only reconstructs colored 3D objects with high fidelity, but also learns effective neural representations that enable insightful brain region analysis. The dataset and associated code will be made publicly available.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.12248
- https://arxiv.org/pdf/2411.12248
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404573697
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404573697Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.12248Digital Object Identifier
- Title
-
Neuro-3D: Towards 3D Visual Decoding from EEG SignalsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-19Full publication date if available
- Authors
-
Zhanqiang Guo, Jiamin Wu, Yonghao Song, Weijian Mai, Qihao Zheng, Wanli Ouyang, Chunfeng SongList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.12248Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.12248Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.12248Direct OA link when available
- Concepts
-
Electroencephalography, Decoding methods, Computer science, Speech recognition, Artificial intelligence, Pattern recognition (psychology), Psychology, Neuroscience, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404573697 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.12248 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.12248 |
| ids.openalex | https://openalex.org/W4404573697 |
| fwci | |
| type | preprint |
| title | Neuro-3D: Towards 3D Visual Decoding from EEG Signals |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9886999726295471 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11707 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9222000241279602 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1709 |
| topics[1].subfield.display_name | Human-Computer Interaction |
| topics[1].display_name | Gaze Tracking and Assistive Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7900599241256714 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C57273362 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7411192655563354 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[1].display_name | Decoding methods |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5524894595146179 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4657006859779358 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4012324810028076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3695172667503357 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.29543375968933105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2588878870010376 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10450124740600586 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.7900599241256714 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/decoding-methods |
| keywords[1].score | 0.7411192655563354 |
| keywords[1].display_name | Decoding methods |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5524894595146179 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.4657006859779358 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4012324810028076 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3695172667503357 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.29543375968933105 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.2588878870010376 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/telecommunications |
| keywords[8].score | 0.10450124740600586 |
| keywords[8].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.12248 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.12248 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.12248 |
| locations[1].id | doi:10.48550/arxiv.2411.12248 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.12248 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084663670 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-4431-583X |
| authorships[0].author.display_name | Zhanqiang Guo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guo, Zhanqiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025651569 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3479-1026 |
| authorships[1].author.display_name | Jiamin Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Jiamin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101557904 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1700-1133 |
| authorships[2].author.display_name | Yonghao Song |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Song, Yonghao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113330437 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Weijian Mai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mai, Weijian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102609119 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Qihao Zheng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zheng, Qihao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5087818121 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9163-2761 |
| authorships[5].author.display_name | Wanli Ouyang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ouyang, Wanli |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5068998602 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1223-3242 |
| authorships[6].author.display_name | Chunfeng Song |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Song, Chunfeng |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.12248 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neuro-3D: Towards 3D Visual Decoding from EEG Signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9886999726295471 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.12248 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.12248 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.12248 |
| primary_location.id | pmh:oai:arXiv.org:2411.12248 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.12248 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.12248 |
| publication_date | 2024-11-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 31, 41, 52, 76, 106 |
| abstract_inverted_index.12 | 88 |
| abstract_inverted_index.3D | 13, 22, 46, 94, 107, 146, 169, 180 |
| abstract_inverted_index.72 | 91 |
| abstract_inverted_index.To | 67, 156 |
| abstract_inverted_index.be | 203 |
| abstract_inverted_index.by | 8 |
| abstract_inverted_index.in | 25, 34, 97 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 2, 12, 59, 93, 145, 159 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.to | 127, 138, 166 |
| abstract_inverted_index.we | 39, 72, 103, 162 |
| abstract_inverted_index.EEG | 50, 85, 113, 119 |
| abstract_inverted_index.The | 197 |
| abstract_inverted_index.and | 20, 83, 100, 124, 130, 143, 199 |
| abstract_inverted_index.are | 135, 163 |
| abstract_inverted_index.but | 185 |
| abstract_inverted_index.has | 29 |
| abstract_inverted_index.how | 16 |
| abstract_inverted_index.new | 42 |
| abstract_inverted_index.not | 176 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.the | 3, 9, 17, 26, 69, 141, 149, 157, 164 |
| abstract_inverted_index.This | 115 |
| abstract_inverted_index.also | 186 |
| abstract_inverted_index.been | 30 |
| abstract_inverted_index.best | 158 |
| abstract_inverted_index.both | 98, 140 |
| abstract_inverted_index.code | 201 |
| abstract_inverted_index.data | 82 |
| abstract_inverted_index.from | 49, 87, 122 |
| abstract_inverted_index.high | 183 |
| abstract_inverted_index.made | 204 |
| abstract_inverted_index.only | 177 |
| abstract_inverted_index.real | 27 |
| abstract_inverted_index.that | 55, 174, 191 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.will | 202 |
| abstract_inverted_index.with | 63, 182 |
| abstract_inverted_index.based | 111 |
| abstract_inverted_index.brain | 18, 194 |
| abstract_inverted_index.cloud | 154 |
| abstract_inverted_index.color | 144 |
| abstract_inverted_index.cues. | 66 |
| abstract_inverted_index.first | 73, 165 |
| abstract_inverted_index.goal, | 38 |
| abstract_inverted_index.learn | 128 |
| abstract_inverted_index.point | 153 |
| abstract_inverted_index.shape | 142 |
| abstract_inverted_index.task: | 44 |
| abstract_inverted_index.which | 134 |
| abstract_inverted_index.world | 5, 28 |
| abstract_inverted_index.enable | 192 |
| abstract_inverted_index.learns | 187 |
| abstract_inverted_index.neural | 60, 132, 189 |
| abstract_inverted_index.region | 195 |
| abstract_inverted_index.robust | 131 |
| abstract_inverted_index.shaped | 7 |
| abstract_inverted_index.static | 123 |
| abstract_inverted_index.stereo | 10 |
| abstract_inverted_index.videos | 99 |
| abstract_inverted_index.visual | 4, 23, 47, 65, 108, 170 |
| abstract_inverted_index.EEG-3D, | 75 |
| abstract_inverted_index.Human's | 0 |
| abstract_inverted_index.Towards | 36 |
| abstract_inverted_index.colored | 152, 179 |
| abstract_inverted_index.complex | 64 |
| abstract_inverted_index.dataset | 78, 198 |
| abstract_inverted_index.derived | 121 |
| abstract_inverted_index.dynamic | 125 |
| abstract_inverted_index.enables | 56 |
| abstract_inverted_index.explore | 167 |
| abstract_inverted_index.images. | 101 |
| abstract_inverted_index.objects | 95, 147, 181 |
| abstract_inverted_index.present | 74 |
| abstract_inverted_index.propose | 104 |
| abstract_inverted_index.provide | 68 |
| abstract_inverted_index.recover | 139 |
| abstract_inverted_index.stimuli | 24, 126 |
| abstract_inverted_index.through | 148 |
| abstract_inverted_index.viewing | 90 |
| abstract_inverted_index.Neuro-3D | 175 |
| abstract_inverted_index.analysis | 81 |
| abstract_inverted_index.decoder. | 155 |
| abstract_inverted_index.decoding | 45, 109 |
| abstract_inverted_index.dynamics | 61 |
| abstract_inverted_index.endeavor | 33 |
| abstract_inverted_index.enriched | 62 |
| abstract_inverted_index.features | 120 |
| abstract_inverted_index.indicate | 173 |
| abstract_inverted_index.proposed | 150 |
| abstract_inverted_index.publicly | 205 |
| abstract_inverted_index.rendered | 96 |
| abstract_inverted_index.signals, | 51 |
| abstract_inverted_index.signals. | 114 |
| abstract_inverted_index.subjects | 89 |
| abstract_inverted_index.utilized | 137 |
| abstract_inverted_index.EEG-based | 168 |
| abstract_inverted_index.Neuro-3D, | 105 |
| abstract_inverted_index.analysis. | 196 |
| abstract_inverted_index.decoding. | 171 |
| abstract_inverted_index.effective | 188 |
| abstract_inverted_index.essential | 70 |
| abstract_inverted_index.extensive | 84 |
| abstract_inverted_index.featuring | 79 |
| abstract_inverted_index.fidelity, | 184 |
| abstract_inverted_index.framework | 110, 116 |
| abstract_inverted_index.introduce | 40 |
| abstract_inverted_index.perceives | 19 |
| abstract_inverted_index.processes | 21 |
| abstract_inverted_index.real-time | 57 |
| abstract_inverted_index.technique | 54 |
| abstract_inverted_index.adaptively | 117 |
| abstract_inverted_index.associated | 200 |
| abstract_inverted_index.available. | 206 |
| abstract_inverted_index.benchmark, | 71 |
| abstract_inverted_index.categories | 92 |
| abstract_inverted_index.insightful | 193 |
| abstract_inverted_index.integrates | 118 |
| abstract_inverted_index.knowledge, | 161 |
| abstract_inverted_index.monitoring | 58 |
| abstract_inverted_index.multimodal | 80 |
| abstract_inverted_index.perception | 1, 48 |
| abstract_inverted_index.pioneering | 77 |
| abstract_inverted_index.processing | 11 |
| abstract_inverted_index.recordings | 86 |
| abstract_inverted_index.Experiments | 172 |
| abstract_inverted_index.Furthermore, | 102 |
| abstract_inverted_index.information. | 14 |
| abstract_inverted_index.longstanding | 32 |
| abstract_inverted_index.neuroimaging | 53 |
| abstract_inverted_index.neuroscience | 43 |
| abstract_inverted_index.reconstructs | 178 |
| abstract_inverted_index.subsequently | 136 |
| abstract_inverted_index.Understanding | 15 |
| abstract_inverted_index.complementary | 129 |
| abstract_inverted_index.neuroscience. | 35 |
| abstract_inverted_index.diffusion-based | 151 |
| abstract_inverted_index.representations | 190 |
| abstract_inverted_index.representations, | 133 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |