Neuro-Optimal Event-Triggered Impulsive Control for Stochastic Systems via ADP Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/tnnls.2022.3232635
This article presents a novel neural-network-based optimal event-triggered impulsive control method. First, a novel general-event-based impulsive transition matrix (GITM) is constructed to represent the probability distribution evolving characteristics regarding all system states across the impulsive actions, rather than the prefixed timing sequence. On the foundation of this GITM, the event-triggered impulsive adaptive dynamic programming (ETIADP) algorithm and its high-efficiency version (HEIADP) are developed to deal with the optimization problems for stochastic systems with event-triggered impulsive controls. It is shown that the obtained controller design scheme can reduce the computational and communication burden caused by updating the controller periodically. By analyzing the admissibility, monotonicity, and optimality properties of ETIADP and HEIADP, we further establish the approximation error bound of the neural networks to address the connection between the ideal and neural-network-based realizations of the present methods. It is proven that the iterative value functions of both the ETIADP and HEIADP algorithms fall in a small neighborhood of the optimum as the iteration index increases to infinity. By adopting a novel task synchronization mechanism, the proposed HEIADP algorithm fully utilizes the computing resources of multiprocessor systems (MPSs), while significantly reducing the memory requirement compared to traditional ADP approaches. Finally, we carry out a numerical study to show that the proposed methods can fulfill the desired goals.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnnls.2022.3232635
- https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313598833
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313598833Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnnls.2022.3232635Digital Object Identifier
- Title
-
Neuro-Optimal Event-Triggered Impulsive Control for Stochastic Systems via ADPWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-06Full publication date if available
- Authors
-
Mingming Liang, Derong LiuList of authors in order
- Landing page
-
https://doi.org/10.1109/tnnls.2022.3232635Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial neural network, Controller (irrigation), Monotonic function, Dynamic programming, Bellman equation, Mathematical optimization, Optimal control, Synchronization (alternating current), Event (particle physics), Sequence (biology), Control theory (sociology), Mathematics, Algorithm, Control (management), Artificial intelligence, Agronomy, Channel (broadcasting), Quantum mechanics, Computer network, Physics, Biology, Mathematical analysis, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313598833 |
|---|---|
| doi | https://doi.org/10.1109/tnnls.2022.3232635 |
| ids.doi | https://doi.org/10.1109/tnnls.2022.3232635 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37018597 |
| ids.openalex | https://openalex.org/W4313598833 |
| fwci | 2.78065083 |
| type | article |
| title | Neuro-Optimal Event-Triggered Impulsive Control for Stochastic Systems via ADP |
| awards[0].id | https://openalex.org/G8979276883 |
| awards[0].funder_id | https://openalex.org/F4320337111 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021A1515110870 |
| awards[0].funder_display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| awards[1].id | https://openalex.org/G3140071169 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62203120 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G8816108514 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62073085 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 7 |
| biblio.volume | 35 |
| biblio.last_page | 9339 |
| biblio.first_page | 9325 |
| topics[0].id | https://openalex.org/T12794 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Adaptive Dynamic Programming Control |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9168999791145325 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T10675 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9132000207901001 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Mechanical Circulatory Support Devices |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320337111 |
| funders[1].ror | |
| funders[1].display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6665499806404114 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.558047354221344 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C203479927 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5353332757949829 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5165939 |
| concepts[2].display_name | Controller (irrigation) |
| concepts[3].id | https://openalex.org/C72169020 |
| concepts[3].level | 2 |
| concepts[3].score | 0.496084064245224 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q194404 |
| concepts[3].display_name | Monotonic function |
| concepts[4].id | https://openalex.org/C37404715 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4782547056674957 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q380679 |
| concepts[4].display_name | Dynamic programming |
| concepts[5].id | https://openalex.org/C14646407 |
| concepts[5].level | 2 |
| concepts[5].score | 0.468424916267395 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1430750 |
| concepts[5].display_name | Bellman equation |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4671907424926758 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C91575142 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4629642963409424 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1971426 |
| concepts[7].display_name | Optimal control |
| concepts[8].id | https://openalex.org/C2778562939 |
| concepts[8].level | 3 |
| concepts[8].score | 0.45540815591812134 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1298791 |
| concepts[8].display_name | Synchronization (alternating current) |
| concepts[9].id | https://openalex.org/C2779662365 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4543522894382477 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[9].display_name | Event (particle physics) |
| concepts[10].id | https://openalex.org/C2778112365 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42626118659973145 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[10].display_name | Sequence (biology) |
| concepts[11].id | https://openalex.org/C47446073 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3557239770889282 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[11].display_name | Control theory (sociology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2548956573009491 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.25450751185417175 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C2775924081 |
| concepts[14].level | 2 |
| concepts[14].score | 0.23079225420951843 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[14].display_name | Control (management) |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11357402801513672 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C6557445 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[16].display_name | Agronomy |
| concepts[17].id | https://openalex.org/C127162648 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[17].display_name | Channel (broadcasting) |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C31258907 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[19].display_name | Computer network |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C134306372 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[22].display_name | Mathematical analysis |
| concepts[23].id | https://openalex.org/C54355233 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[23].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6665499806404114 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.558047354221344 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/controller |
| keywords[2].score | 0.5353332757949829 |
| keywords[2].display_name | Controller (irrigation) |
| keywords[3].id | https://openalex.org/keywords/monotonic-function |
| keywords[3].score | 0.496084064245224 |
| keywords[3].display_name | Monotonic function |
| keywords[4].id | https://openalex.org/keywords/dynamic-programming |
| keywords[4].score | 0.4782547056674957 |
| keywords[4].display_name | Dynamic programming |
| keywords[5].id | https://openalex.org/keywords/bellman-equation |
| keywords[5].score | 0.468424916267395 |
| keywords[5].display_name | Bellman equation |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.4671907424926758 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/optimal-control |
| keywords[7].score | 0.4629642963409424 |
| keywords[7].display_name | Optimal control |
| keywords[8].id | https://openalex.org/keywords/synchronization |
| keywords[8].score | 0.45540815591812134 |
| keywords[8].display_name | Synchronization (alternating current) |
| keywords[9].id | https://openalex.org/keywords/event |
| keywords[9].score | 0.4543522894382477 |
| keywords[9].display_name | Event (particle physics) |
| keywords[10].id | https://openalex.org/keywords/sequence |
| keywords[10].score | 0.42626118659973145 |
| keywords[10].display_name | Sequence (biology) |
| keywords[11].id | https://openalex.org/keywords/control-theory |
| keywords[11].score | 0.3557239770889282 |
| keywords[11].display_name | Control theory (sociology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2548956573009491 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.25450751185417175 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/control |
| keywords[14].score | 0.23079225420951843 |
| keywords[14].display_name | Control (management) |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.11357402801513672 |
| keywords[15].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/tnnls.2022.3232635 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210175523 |
| locations[0].source.issn | 2162-237X, 2162-2388 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2162-237X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tnnls.2022.3232635 |
| locations[1].id | pmid:37018597 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural networks and learning systems |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37018597 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5005187576 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9299-4465 |
| authorships[0].author.display_name | Mingming Liang |
| authorships[0].affiliations[0].raw_affiliation_string | Auto Engineering Research Institute, BYD Auto Industry Company Limited, Shenzhen, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingming Liang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Auto Engineering Research Institute, BYD Auto Industry Company Limited, Shenzhen, China |
| authorships[1].author.id | https://openalex.org/A5004057129 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3715-4778 |
| authorships[1].author.display_name | Derong Liu |
| authorships[1].countries | CN, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I39422238 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL, USA |
| authorships[1].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[1].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southern University of Science and Technology |
| authorships[1].institutions[1].id | https://openalex.org/I39422238 |
| authorships[1].institutions[1].ror | https://ror.org/02mpq6x41 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I39422238 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Illinois Chicago |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Derong Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL, USA, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neuro-Optimal Event-Triggered Impulsive Control for Stochastic Systems via ADP |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12794 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Adaptive Dynamic Programming Control |
| related_works | https://openalex.org/W4255265352, https://openalex.org/W4239477580, https://openalex.org/W2090698372, https://openalex.org/W4383890581, https://openalex.org/W2965004901, https://openalex.org/W2921905705, https://openalex.org/W2379312070, https://openalex.org/W1932159282, https://openalex.org/W4285537323, https://openalex.org/W4233178034 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/tnnls.2022.3232635 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210175523 |
| best_oa_location.source.issn | 2162-237X, 2162-2388 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2162-237X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnnls.2022.3232635 |
| primary_location.id | doi:10.1109/tnnls.2022.3232635 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210175523 |
| primary_location.source.issn | 2162-237X, 2162-2388 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2162-237X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10008206.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tnnls.2022.3232635 |
| publication_date | 2023-01-06 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1983089547, https://openalex.org/W2048687352, https://openalex.org/W3114263192, https://openalex.org/W2779055119, https://openalex.org/W1999678919, https://openalex.org/W2561946193, https://openalex.org/W2035003264, https://openalex.org/W2093831009, https://openalex.org/W2189990206, https://openalex.org/W2559988195, https://openalex.org/W2501330048, https://openalex.org/W2912370005, https://openalex.org/W3006655542, https://openalex.org/W2920816447, https://openalex.org/W3110979110, https://openalex.org/W2988019536, https://openalex.org/W2909130280, https://openalex.org/W2565845380, https://openalex.org/W2109373554, https://openalex.org/W2914624657, https://openalex.org/W2515904005, https://openalex.org/W2904497903, https://openalex.org/W3008536234, https://openalex.org/W1982857276, https://openalex.org/W3087240003, https://openalex.org/W2949510088, https://openalex.org/W2038356517, https://openalex.org/W1950486977, https://openalex.org/W2005862871, https://openalex.org/W2998248873, https://openalex.org/W1971383149, https://openalex.org/W1891098503, https://openalex.org/W2518470966, https://openalex.org/W2921905705, https://openalex.org/W3044038295, https://openalex.org/W2944734899, https://openalex.org/W3046760967, https://openalex.org/W3135757144, https://openalex.org/W3009835149, https://openalex.org/W2050240106, https://openalex.org/W3016893731, https://openalex.org/W2024780670, https://openalex.org/W3025755490, https://openalex.org/W2570494446 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 3, 12, 152, 167, 200 |
| abstract_inverted_index.By | 98, 165 |
| abstract_inverted_index.It | 76, 135 |
| abstract_inverted_index.On | 42 |
| abstract_inverted_index.as | 158 |
| abstract_inverted_index.by | 93 |
| abstract_inverted_index.in | 151 |
| abstract_inverted_index.is | 19, 77, 136 |
| abstract_inverted_index.of | 45, 106, 117, 131, 143, 155, 181 |
| abstract_inverted_index.to | 21, 63, 121, 163, 192, 203 |
| abstract_inverted_index.we | 110, 197 |
| abstract_inverted_index.ADP | 194 |
| abstract_inverted_index.all | 29 |
| abstract_inverted_index.and | 56, 89, 103, 108, 128, 147 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.can | 85, 209 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.its | 57 |
| abstract_inverted_index.out | 199 |
| abstract_inverted_index.the | 23, 33, 38, 43, 48, 66, 80, 87, 95, 100, 113, 118, 123, 126, 132, 139, 145, 156, 159, 172, 178, 188, 206, 211 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 144 |
| abstract_inverted_index.deal | 64 |
| abstract_inverted_index.fall | 150 |
| abstract_inverted_index.show | 204 |
| abstract_inverted_index.task | 169 |
| abstract_inverted_index.than | 37 |
| abstract_inverted_index.that | 79, 138, 205 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.with | 65, 72 |
| abstract_inverted_index.GITM, | 47 |
| abstract_inverted_index.bound | 116 |
| abstract_inverted_index.carry | 198 |
| abstract_inverted_index.error | 115 |
| abstract_inverted_index.fully | 176 |
| abstract_inverted_index.ideal | 127 |
| abstract_inverted_index.index | 161 |
| abstract_inverted_index.novel | 4, 13, 168 |
| abstract_inverted_index.shown | 78 |
| abstract_inverted_index.small | 153 |
| abstract_inverted_index.study | 202 |
| abstract_inverted_index.value | 141 |
| abstract_inverted_index.while | 185 |
| abstract_inverted_index.(GITM) | 18 |
| abstract_inverted_index.ETIADP | 107, 146 |
| abstract_inverted_index.First, | 11 |
| abstract_inverted_index.HEIADP | 148, 174 |
| abstract_inverted_index.across | 32 |
| abstract_inverted_index.burden | 91 |
| abstract_inverted_index.caused | 92 |
| abstract_inverted_index.design | 83 |
| abstract_inverted_index.goals. | 213 |
| abstract_inverted_index.matrix | 17 |
| abstract_inverted_index.memory | 189 |
| abstract_inverted_index.neural | 119 |
| abstract_inverted_index.proven | 137 |
| abstract_inverted_index.rather | 36 |
| abstract_inverted_index.reduce | 86 |
| abstract_inverted_index.scheme | 84 |
| abstract_inverted_index.states | 31 |
| abstract_inverted_index.system | 30 |
| abstract_inverted_index.timing | 40 |
| abstract_inverted_index.(MPSs), | 184 |
| abstract_inverted_index.HEIADP, | 109 |
| abstract_inverted_index.address | 122 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.control | 9 |
| abstract_inverted_index.desired | 212 |
| abstract_inverted_index.dynamic | 52 |
| abstract_inverted_index.fulfill | 210 |
| abstract_inverted_index.further | 111 |
| abstract_inverted_index.method. | 10 |
| abstract_inverted_index.methods | 208 |
| abstract_inverted_index.optimal | 6 |
| abstract_inverted_index.optimum | 157 |
| abstract_inverted_index.present | 133 |
| abstract_inverted_index.systems | 71, 183 |
| abstract_inverted_index.version | 59 |
| abstract_inverted_index.(ETIADP) | 54 |
| abstract_inverted_index.(HEIADP) | 60 |
| abstract_inverted_index.Finally, | 196 |
| abstract_inverted_index.actions, | 35 |
| abstract_inverted_index.adaptive | 51 |
| abstract_inverted_index.adopting | 166 |
| abstract_inverted_index.compared | 191 |
| abstract_inverted_index.evolving | 26 |
| abstract_inverted_index.methods. | 134 |
| abstract_inverted_index.networks | 120 |
| abstract_inverted_index.obtained | 81 |
| abstract_inverted_index.prefixed | 39 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.problems | 68 |
| abstract_inverted_index.proposed | 173, 207 |
| abstract_inverted_index.reducing | 187 |
| abstract_inverted_index.updating | 94 |
| abstract_inverted_index.utilizes | 177 |
| abstract_inverted_index.algorithm | 55, 175 |
| abstract_inverted_index.analyzing | 99 |
| abstract_inverted_index.computing | 179 |
| abstract_inverted_index.controls. | 75 |
| abstract_inverted_index.developed | 62 |
| abstract_inverted_index.establish | 112 |
| abstract_inverted_index.functions | 142 |
| abstract_inverted_index.impulsive | 8, 15, 34, 50, 74 |
| abstract_inverted_index.increases | 162 |
| abstract_inverted_index.infinity. | 164 |
| abstract_inverted_index.iteration | 160 |
| abstract_inverted_index.iterative | 140 |
| abstract_inverted_index.numerical | 201 |
| abstract_inverted_index.regarding | 28 |
| abstract_inverted_index.represent | 22 |
| abstract_inverted_index.resources | 180 |
| abstract_inverted_index.sequence. | 41 |
| abstract_inverted_index.algorithms | 149 |
| abstract_inverted_index.connection | 124 |
| abstract_inverted_index.controller | 82, 96 |
| abstract_inverted_index.foundation | 44 |
| abstract_inverted_index.mechanism, | 171 |
| abstract_inverted_index.optimality | 104 |
| abstract_inverted_index.properties | 105 |
| abstract_inverted_index.stochastic | 70 |
| abstract_inverted_index.transition | 16 |
| abstract_inverted_index.approaches. | 195 |
| abstract_inverted_index.constructed | 20 |
| abstract_inverted_index.probability | 24 |
| abstract_inverted_index.programming | 53 |
| abstract_inverted_index.requirement | 190 |
| abstract_inverted_index.traditional | 193 |
| abstract_inverted_index.distribution | 25 |
| abstract_inverted_index.neighborhood | 154 |
| abstract_inverted_index.optimization | 67 |
| abstract_inverted_index.realizations | 130 |
| abstract_inverted_index.approximation | 114 |
| abstract_inverted_index.communication | 90 |
| abstract_inverted_index.computational | 88 |
| abstract_inverted_index.monotonicity, | 102 |
| abstract_inverted_index.periodically. | 97 |
| abstract_inverted_index.significantly | 186 |
| abstract_inverted_index.admissibility, | 101 |
| abstract_inverted_index.multiprocessor | 182 |
| abstract_inverted_index.characteristics | 27 |
| abstract_inverted_index.event-triggered | 7, 49, 73 |
| abstract_inverted_index.high-efficiency | 58 |
| abstract_inverted_index.synchronization | 170 |
| abstract_inverted_index.general-event-based | 14 |
| abstract_inverted_index.neural-network-based | 5, 129 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.88580663 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |