Neuroevolution of Recurrent Architectures on Control Tasks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.12431
Modern artificial intelligence works typically train the parameters of fixed-sized deep neural networks using gradient-based optimization techniques. Simple evolutionary algorithms have recently been shown to also be capable of optimizing deep neural network parameters, at times matching the performance of gradient-based techniques, e.g. in reinforcement learning settings. In addition to optimizing network parameters, many evolutionary computation techniques are also capable of progressively constructing network architectures. However, constructing network architectures from elementary evolution rules has not yet been shown to scale to modern reinforcement learning benchmarks. In this paper we therefore propose a new approach in which the architectures of recurrent neural networks dynamically evolve according to a small set of mutation rules. We implement a massively parallel evolutionary algorithm and run experiments on all 19 OpenAI Gym state-based reinforcement learning control tasks. We find that in most cases, dynamic agents match or exceed the performance of gradient-based agents while utilizing orders of magnitude fewer parameters. We believe our work to open avenues for real-life applications where network compactness and autonomous design are of critical importance. We provide our source code, final model checkpoints and full results at github.com/MaximilienLC/nra.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.12431
- https://arxiv.org/pdf/2304.12431
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367060535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367060535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.12431Digital Object Identifier
- Title
-
Neuroevolution of Recurrent Architectures on Control TasksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-03Full publication date if available
- Authors
-
Maximilien Le Clei, Pierre BellecList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.12431Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.12431Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.12431Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Neuroevolution, Artificial intelligence, Artificial neural network, Massively parallel, Deep learning, Matching (statistics), Set (abstract data type), Evolutionary algorithm, Evolutionary computation, Code (set theory), Computation, Machine learning, Parallel computing, Algorithm, Statistics, Mathematics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367060535 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.12431 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.12431 |
| ids.openalex | https://openalex.org/W4367060535 |
| fwci | |
| type | preprint |
| title | Neuroevolution of Recurrent Architectures on Control Tasks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9898999929428101 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T11975 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9805999994277954 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Evolutionary Algorithms and Applications |
| topics[2].id | https://openalex.org/T10100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.975600004196167 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8727515935897827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7833113074302673 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C118070581 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7315066456794739 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2060528 |
| concepts[2].display_name | Neuroevolution |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.630813717842102 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6221524477005005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C190475519 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5499880909919739 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q544384 |
| concepts[5].display_name | Massively parallel |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5008547306060791 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C165064840 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4775722324848175 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[7].display_name | Matching (statistics) |
| concepts[8].id | https://openalex.org/C177264268 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46332094073295593 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[8].display_name | Set (abstract data type) |
| concepts[9].id | https://openalex.org/C159149176 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4565257132053375 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[9].display_name | Evolutionary algorithm |
| concepts[10].id | https://openalex.org/C105902424 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45297732949256897 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1197129 |
| concepts[10].display_name | Evolutionary computation |
| concepts[11].id | https://openalex.org/C2776760102 |
| concepts[11].level | 3 |
| concepts[11].score | 0.44549256563186646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[11].display_name | Code (set theory) |
| concepts[12].id | https://openalex.org/C45374587 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4230201244354248 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[12].display_name | Computation |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.39944350719451904 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C173608175 |
| concepts[14].level | 1 |
| concepts[14].score | 0.122153639793396 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[14].display_name | Parallel computing |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10565873980522156 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8727515935897827 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7833113074302673 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/neuroevolution |
| keywords[2].score | 0.7315066456794739 |
| keywords[2].display_name | Neuroevolution |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.630813717842102 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6221524477005005 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/massively-parallel |
| keywords[5].score | 0.5499880909919739 |
| keywords[5].display_name | Massively parallel |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5008547306060791 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/matching |
| keywords[7].score | 0.4775722324848175 |
| keywords[7].display_name | Matching (statistics) |
| keywords[8].id | https://openalex.org/keywords/set |
| keywords[8].score | 0.46332094073295593 |
| keywords[8].display_name | Set (abstract data type) |
| keywords[9].id | https://openalex.org/keywords/evolutionary-algorithm |
| keywords[9].score | 0.4565257132053375 |
| keywords[9].display_name | Evolutionary algorithm |
| keywords[10].id | https://openalex.org/keywords/evolutionary-computation |
| keywords[10].score | 0.45297732949256897 |
| keywords[10].display_name | Evolutionary computation |
| keywords[11].id | https://openalex.org/keywords/code |
| keywords[11].score | 0.44549256563186646 |
| keywords[11].display_name | Code (set theory) |
| keywords[12].id | https://openalex.org/keywords/computation |
| keywords[12].score | 0.4230201244354248 |
| keywords[12].display_name | Computation |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.39944350719451904 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/parallel-computing |
| keywords[14].score | 0.122153639793396 |
| keywords[14].display_name | Parallel computing |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.10565873980522156 |
| keywords[15].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.12431 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.12431 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.12431 |
| locations[1].id | doi:10.48550/arxiv.2304.12431 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.12431 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053865792 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9831-6657 |
| authorships[0].author.display_name | Maximilien Le Clei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Clei, Maximilien Le |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009114084 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9111-0699 |
| authorships[1].author.display_name | Pierre Bellec |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Bellec, Pierre |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.12431 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neuroevolution of Recurrent Architectures on Control Tasks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9898999929428101 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W2811365478, https://openalex.org/W2735321217, https://openalex.org/W2962258836, https://openalex.org/W2130703626, https://openalex.org/W2796541468, https://openalex.org/W4297582752, https://openalex.org/W4285805405, https://openalex.org/W2391924736, https://openalex.org/W3133779647, https://openalex.org/W1560122427 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.12431 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.12431 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.12431 |
| primary_location.id | pmh:oai:arXiv.org:2304.12431 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.12431 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.12431 |
| publication_date | 2023-04-03 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 91, 106, 114 |
| abstract_inverted_index.19 | 124 |
| abstract_inverted_index.In | 47, 85 |
| abstract_inverted_index.We | 112, 132, 155, 175 |
| abstract_inverted_index.at | 34, 186 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.in | 43, 94, 135 |
| abstract_inverted_index.of | 8, 28, 39, 60, 98, 109, 145, 151, 172 |
| abstract_inverted_index.on | 122 |
| abstract_inverted_index.or | 141 |
| abstract_inverted_index.to | 24, 49, 78, 80, 105, 159 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.Gym | 126 |
| abstract_inverted_index.all | 123 |
| abstract_inverted_index.and | 119, 168, 183 |
| abstract_inverted_index.are | 57, 171 |
| abstract_inverted_index.for | 162 |
| abstract_inverted_index.has | 73 |
| abstract_inverted_index.new | 92 |
| abstract_inverted_index.not | 74 |
| abstract_inverted_index.our | 157, 177 |
| abstract_inverted_index.run | 120 |
| abstract_inverted_index.set | 108 |
| abstract_inverted_index.the | 6, 37, 96, 143 |
| abstract_inverted_index.yet | 75 |
| abstract_inverted_index.also | 25, 58 |
| abstract_inverted_index.been | 22, 76 |
| abstract_inverted_index.deep | 10, 30 |
| abstract_inverted_index.e.g. | 42 |
| abstract_inverted_index.find | 133 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.full | 184 |
| abstract_inverted_index.have | 20 |
| abstract_inverted_index.many | 53 |
| abstract_inverted_index.most | 136 |
| abstract_inverted_index.open | 160 |
| abstract_inverted_index.that | 134 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.work | 158 |
| abstract_inverted_index.code, | 179 |
| abstract_inverted_index.fewer | 153 |
| abstract_inverted_index.final | 180 |
| abstract_inverted_index.match | 140 |
| abstract_inverted_index.model | 181 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.rules | 72 |
| abstract_inverted_index.scale | 79 |
| abstract_inverted_index.shown | 23, 77 |
| abstract_inverted_index.small | 107 |
| abstract_inverted_index.times | 35 |
| abstract_inverted_index.train | 5 |
| abstract_inverted_index.using | 13 |
| abstract_inverted_index.where | 165 |
| abstract_inverted_index.which | 95 |
| abstract_inverted_index.while | 148 |
| abstract_inverted_index.works | 3 |
| abstract_inverted_index.Modern | 0 |
| abstract_inverted_index.OpenAI | 125 |
| abstract_inverted_index.Simple | 17 |
| abstract_inverted_index.agents | 139, 147 |
| abstract_inverted_index.cases, | 137 |
| abstract_inverted_index.design | 170 |
| abstract_inverted_index.evolve | 103 |
| abstract_inverted_index.exceed | 142 |
| abstract_inverted_index.modern | 81 |
| abstract_inverted_index.neural | 11, 31, 100 |
| abstract_inverted_index.orders | 150 |
| abstract_inverted_index.rules. | 111 |
| abstract_inverted_index.source | 178 |
| abstract_inverted_index.tasks. | 131 |
| abstract_inverted_index.avenues | 161 |
| abstract_inverted_index.believe | 156 |
| abstract_inverted_index.capable | 27, 59 |
| abstract_inverted_index.control | 130 |
| abstract_inverted_index.dynamic | 138 |
| abstract_inverted_index.network | 32, 51, 63, 67, 166 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.provide | 176 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.addition | 48 |
| abstract_inverted_index.approach | 93 |
| abstract_inverted_index.critical | 173 |
| abstract_inverted_index.learning | 45, 83, 129 |
| abstract_inverted_index.matching | 36 |
| abstract_inverted_index.mutation | 110 |
| abstract_inverted_index.networks | 12, 101 |
| abstract_inverted_index.parallel | 116 |
| abstract_inverted_index.recently | 21 |
| abstract_inverted_index.according | 104 |
| abstract_inverted_index.algorithm | 118 |
| abstract_inverted_index.evolution | 71 |
| abstract_inverted_index.implement | 113 |
| abstract_inverted_index.magnitude | 152 |
| abstract_inverted_index.massively | 115 |
| abstract_inverted_index.real-life | 163 |
| abstract_inverted_index.recurrent | 99 |
| abstract_inverted_index.settings. | 46 |
| abstract_inverted_index.therefore | 89 |
| abstract_inverted_index.typically | 4 |
| abstract_inverted_index.utilizing | 149 |
| abstract_inverted_index.algorithms | 19 |
| abstract_inverted_index.artificial | 1 |
| abstract_inverted_index.autonomous | 169 |
| abstract_inverted_index.elementary | 70 |
| abstract_inverted_index.optimizing | 29, 50 |
| abstract_inverted_index.parameters | 7 |
| abstract_inverted_index.techniques | 56 |
| abstract_inverted_index.benchmarks. | 84 |
| abstract_inverted_index.checkpoints | 182 |
| abstract_inverted_index.compactness | 167 |
| abstract_inverted_index.computation | 55 |
| abstract_inverted_index.dynamically | 102 |
| abstract_inverted_index.experiments | 121 |
| abstract_inverted_index.fixed-sized | 9 |
| abstract_inverted_index.importance. | 174 |
| abstract_inverted_index.parameters, | 33, 52 |
| abstract_inverted_index.parameters. | 154 |
| abstract_inverted_index.performance | 38, 144 |
| abstract_inverted_index.state-based | 127 |
| abstract_inverted_index.techniques, | 41 |
| abstract_inverted_index.techniques. | 16 |
| abstract_inverted_index.applications | 164 |
| abstract_inverted_index.constructing | 62, 66 |
| abstract_inverted_index.evolutionary | 18, 54, 117 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.optimization | 15 |
| abstract_inverted_index.architectures | 68, 97 |
| abstract_inverted_index.progressively | 61 |
| abstract_inverted_index.reinforcement | 44, 82, 128 |
| abstract_inverted_index.architectures. | 64 |
| abstract_inverted_index.gradient-based | 14, 40, 146 |
| abstract_inverted_index.github.com/MaximilienLC/nra. | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile |