Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.05156
The Keyword Spotting (KWS) task involves continuous audio stream monitoring to detect predefined words, requiring low energy devices for continuous processing. Neuromorphic devices effectively address this energy challenge. However, the general neuromorphic KWS pipeline, from microphone to Spiking Neural Network (SNN), entails multiple processing stages. Leveraging the popularity of Pulse Density Modulation (PDM) microphones in modern devices and their similarity to spiking neurons, we propose a direct microphone-to-SNN connection. This approach eliminates intermediate stages, notably reducing computational costs. The system achieved an accuracy of 91.54\% on the Google Speech Command (GSC) dataset, surpassing the state-of-the-art for the Spiking Speech Command (SSC) dataset which is a bio-inspired encoded GSC. Furthermore, the observed sparsity in network activity and connectivity indicates potential for remarkably low energy consumption in a neuromorphic device implementation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.05156
- https://arxiv.org/pdf/2408.05156
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402386376
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402386376Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.05156Digital Object Identifier
- Title
-
Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS MicrophonesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-09Full publication date if available
- Authors
-
Sidi Yaya Arnaud Yarga, Sean U. N. WoodList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.05156Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.05156Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.05156Direct OA link when available
- Concepts
-
Neuromorphic engineering, Keyword spotting, Microelectromechanical systems, Spotting, Modulation (music), Pulse (music), Acoustics, Computer science, Physics, Electronic engineering, Speech recognition, Engineering, Artificial intelligence, Telecommunications, Optoelectronics, Artificial neural network, DetectorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402386376 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.05156 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.05156 |
| ids.openalex | https://openalex.org/W4402386376 |
| fwci | |
| type | preprint |
| title | Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9593999981880188 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11800 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9429000020027161 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | User Authentication and Security Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151927369 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8503760695457458 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1981312 |
| concepts[0].display_name | Neuromorphic engineering |
| concepts[1].id | https://openalex.org/C2781213101 |
| concepts[1].level | 2 |
| concepts[1].score | 0.839704692363739 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6398558 |
| concepts[1].display_name | Keyword spotting |
| concepts[2].id | https://openalex.org/C37977207 |
| concepts[2].level | 2 |
| concepts[2].score | 0.692766010761261 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175561 |
| concepts[2].display_name | Microelectromechanical systems |
| concepts[3].id | https://openalex.org/C2779506182 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6247025728225708 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7580141 |
| concepts[3].display_name | Spotting |
| concepts[4].id | https://openalex.org/C123079801 |
| concepts[4].level | 2 |
| concepts[4].score | 0.59237140417099 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q750240 |
| concepts[4].display_name | Modulation (music) |
| concepts[5].id | https://openalex.org/C2780167933 |
| concepts[5].level | 3 |
| concepts[5].score | 0.43828505277633667 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1550652 |
| concepts[5].display_name | Pulse (music) |
| concepts[6].id | https://openalex.org/C24890656 |
| concepts[6].level | 1 |
| concepts[6].score | 0.427043616771698 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[6].display_name | Acoustics |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.42450425028800964 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3534935712814331 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C24326235 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3225975036621094 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[9].display_name | Electronic engineering |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32112497091293335 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2683839797973633 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2514961361885071 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.22102391719818115 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C49040817 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21097326278686523 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[14].display_name | Optoelectronics |
| concepts[15].id | https://openalex.org/C50644808 |
| concepts[15].level | 2 |
| concepts[15].score | 0.14518728852272034 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[15].display_name | Artificial neural network |
| concepts[16].id | https://openalex.org/C94915269 |
| concepts[16].level | 2 |
| concepts[16].score | 0.08113163709640503 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[16].display_name | Detector |
| keywords[0].id | https://openalex.org/keywords/neuromorphic-engineering |
| keywords[0].score | 0.8503760695457458 |
| keywords[0].display_name | Neuromorphic engineering |
| keywords[1].id | https://openalex.org/keywords/keyword-spotting |
| keywords[1].score | 0.839704692363739 |
| keywords[1].display_name | Keyword spotting |
| keywords[2].id | https://openalex.org/keywords/microelectromechanical-systems |
| keywords[2].score | 0.692766010761261 |
| keywords[2].display_name | Microelectromechanical systems |
| keywords[3].id | https://openalex.org/keywords/spotting |
| keywords[3].score | 0.6247025728225708 |
| keywords[3].display_name | Spotting |
| keywords[4].id | https://openalex.org/keywords/modulation |
| keywords[4].score | 0.59237140417099 |
| keywords[4].display_name | Modulation (music) |
| keywords[5].id | https://openalex.org/keywords/pulse |
| keywords[5].score | 0.43828505277633667 |
| keywords[5].display_name | Pulse (music) |
| keywords[6].id | https://openalex.org/keywords/acoustics |
| keywords[6].score | 0.427043616771698 |
| keywords[6].display_name | Acoustics |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.42450425028800964 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.3534935712814331 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/electronic-engineering |
| keywords[9].score | 0.3225975036621094 |
| keywords[9].display_name | Electronic engineering |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.32112497091293335 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.2683839797973633 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2514961361885071 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.22102391719818115 |
| keywords[13].display_name | Telecommunications |
| keywords[14].id | https://openalex.org/keywords/optoelectronics |
| keywords[14].score | 0.21097326278686523 |
| keywords[14].display_name | Optoelectronics |
| keywords[15].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[15].score | 0.14518728852272034 |
| keywords[15].display_name | Artificial neural network |
| keywords[16].id | https://openalex.org/keywords/detector |
| keywords[16].score | 0.08113163709640503 |
| keywords[16].display_name | Detector |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.05156 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.05156 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.05156 |
| locations[1].id | doi:10.48550/arxiv.2408.05156 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.05156 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5086006042 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4727-6437 |
| authorships[0].author.display_name | Sidi Yaya Arnaud Yarga |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yarga, Sidi Yaya Arnaud |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5016964600 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6821-1619 |
| authorships[1].author.display_name | Sean U. N. Wood |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Wood, Sean U. N. |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.05156 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-10T00:00:00 |
| display_name | Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9593999981880188 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2918559346, https://openalex.org/W2114097550, https://openalex.org/W3119978414, https://openalex.org/W4286904253, https://openalex.org/W2516975559, https://openalex.org/W2545741539, https://openalex.org/W3206647229, https://openalex.org/W1969408022, https://openalex.org/W2000885660, https://openalex.org/W2117995638 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.05156 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.05156 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.05156 |
| primary_location.id | pmh:oai:arXiv.org:2408.05156 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.05156 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.05156 |
| publication_date | 2024-08-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 65, 104, 125 |
| abstract_inverted_index.an | 81 |
| abstract_inverted_index.in | 54, 112, 124 |
| abstract_inverted_index.is | 103 |
| abstract_inverted_index.of | 48, 83 |
| abstract_inverted_index.on | 85 |
| abstract_inverted_index.to | 10, 36, 60 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.KWS | 32 |
| abstract_inverted_index.The | 0, 78 |
| abstract_inverted_index.and | 57, 115 |
| abstract_inverted_index.for | 18, 95, 119 |
| abstract_inverted_index.low | 15, 121 |
| abstract_inverted_index.the | 29, 46, 86, 93, 96, 109 |
| abstract_inverted_index.GSC. | 107 |
| abstract_inverted_index.This | 69 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.task | 4 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.(GSC) | 90 |
| abstract_inverted_index.(KWS) | 3 |
| abstract_inverted_index.(PDM) | 52 |
| abstract_inverted_index.(SSC) | 100 |
| abstract_inverted_index.Pulse | 49 |
| abstract_inverted_index.audio | 7 |
| abstract_inverted_index.their | 58 |
| abstract_inverted_index.which | 102 |
| abstract_inverted_index.(SNN), | 40 |
| abstract_inverted_index.Google | 87 |
| abstract_inverted_index.Neural | 38 |
| abstract_inverted_index.Speech | 88, 98 |
| abstract_inverted_index.costs. | 77 |
| abstract_inverted_index.detect | 11 |
| abstract_inverted_index.device | 127 |
| abstract_inverted_index.direct | 66 |
| abstract_inverted_index.energy | 16, 26, 122 |
| abstract_inverted_index.modern | 55 |
| abstract_inverted_index.stream | 8 |
| abstract_inverted_index.system | 79 |
| abstract_inverted_index.words, | 13 |
| abstract_inverted_index.91.54\% | 84 |
| abstract_inverted_index.Command | 89, 99 |
| abstract_inverted_index.Density | 50 |
| abstract_inverted_index.Keyword | 1 |
| abstract_inverted_index.Network | 39 |
| abstract_inverted_index.Spiking | 37, 97 |
| abstract_inverted_index.address | 24 |
| abstract_inverted_index.dataset | 101 |
| abstract_inverted_index.devices | 17, 22, 56 |
| abstract_inverted_index.encoded | 106 |
| abstract_inverted_index.entails | 41 |
| abstract_inverted_index.general | 30 |
| abstract_inverted_index.network | 113 |
| abstract_inverted_index.notably | 74 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.spiking | 61 |
| abstract_inverted_index.stages, | 73 |
| abstract_inverted_index.stages. | 44 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.Spotting | 2 |
| abstract_inverted_index.accuracy | 82 |
| abstract_inverted_index.achieved | 80 |
| abstract_inverted_index.activity | 114 |
| abstract_inverted_index.approach | 70 |
| abstract_inverted_index.dataset, | 91 |
| abstract_inverted_index.involves | 5 |
| abstract_inverted_index.multiple | 42 |
| abstract_inverted_index.neurons, | 62 |
| abstract_inverted_index.observed | 110 |
| abstract_inverted_index.reducing | 75 |
| abstract_inverted_index.sparsity | 111 |
| abstract_inverted_index.indicates | 117 |
| abstract_inverted_index.pipeline, | 33 |
| abstract_inverted_index.potential | 118 |
| abstract_inverted_index.requiring | 14 |
| abstract_inverted_index.Leveraging | 45 |
| abstract_inverted_index.Modulation | 51 |
| abstract_inverted_index.challenge. | 27 |
| abstract_inverted_index.continuous | 6, 19 |
| abstract_inverted_index.eliminates | 71 |
| abstract_inverted_index.microphone | 35 |
| abstract_inverted_index.monitoring | 9 |
| abstract_inverted_index.popularity | 47 |
| abstract_inverted_index.predefined | 12 |
| abstract_inverted_index.processing | 43 |
| abstract_inverted_index.remarkably | 120 |
| abstract_inverted_index.similarity | 59 |
| abstract_inverted_index.surpassing | 92 |
| abstract_inverted_index.connection. | 68 |
| abstract_inverted_index.consumption | 123 |
| abstract_inverted_index.effectively | 23 |
| abstract_inverted_index.microphones | 53 |
| abstract_inverted_index.processing. | 20 |
| abstract_inverted_index.Furthermore, | 108 |
| abstract_inverted_index.Neuromorphic | 21 |
| abstract_inverted_index.bio-inspired | 105 |
| abstract_inverted_index.connectivity | 116 |
| abstract_inverted_index.intermediate | 72 |
| abstract_inverted_index.neuromorphic | 31, 126 |
| abstract_inverted_index.computational | 76 |
| abstract_inverted_index.implementation. | 128 |
| abstract_inverted_index.state-of-the-art | 94 |
| abstract_inverted_index.microphone-to-SNN | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |