Neuromorphic Networks as Revealed by Features Similarity Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.10571
The study of neuronal morphology is important not only for its potential relationship with neuronal dynamics, but also as a means to classify diverse types of cells and compare than among species, organs, and conditions. In the present work, we approach this interesting problem by using the concept of coincidence similarity, as well as a respectively derived method for mapping datasets into networks. The coincidence similarity has been found to allow some specific interesting properties which have allowed enhanced performance (selectivity and sensitivity) concerning several pattern recognition tasks. Several combinations of 20 morphological features were considered, and the respective networks were obtained by maximizing the literal modularity (in supervised manner) respectively to the involved parameters. Well-separated groups were obtained that provide a rich representation of the main similarity interrelationships between the 735 considered neuronal cells. A sequence of network configurations illustrating the progressive merging between cells and groups was also obtained by varying one of the coincidence parameters.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.10571
- https://arxiv.org/pdf/2207.10571
- OA Status
- green
- Cited By
- 1
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281999649
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281999649Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.10571Digital Object Identifier
- Title
-
Neuromorphic Networks as Revealed by Features SimilarityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-13Full publication date if available
- Authors
-
Alexandre Benatti, Henrique Ferraz de Arruda, Luciano CostaList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.10571Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.10571Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.10571Direct OA link when available
- Concepts
-
Neuromorphic engineering, Similarity (geometry), Computer science, Artificial intelligence, Cognitive science, Psychology, Artificial neural network, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281999649 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.10571 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.10571 |
| ids.openalex | https://openalex.org/W4281999649 |
| fwci | |
| type | preprint |
| title | Neuromorphic Networks as Revealed by Features Similarity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12859 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Cell Image Analysis Techniques |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T12536 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9736999869346619 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Topological and Geometric Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151927369 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8938941955566406 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1981312 |
| concepts[0].display_name | Neuromorphic engineering |
| concepts[1].id | https://openalex.org/C103278499 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6522846817970276 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[1].display_name | Similarity (geometry) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47134989500045776 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.454444020986557 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C188147891 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32267189025878906 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[4].display_name | Cognitive science |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.31530243158340454 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.312874972820282 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/neuromorphic-engineering |
| keywords[0].score | 0.8938941955566406 |
| keywords[0].display_name | Neuromorphic engineering |
| keywords[1].id | https://openalex.org/keywords/similarity |
| keywords[1].score | 0.6522846817970276 |
| keywords[1].display_name | Similarity (geometry) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47134989500045776 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.454444020986557 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/cognitive-science |
| keywords[4].score | 0.32267189025878906 |
| keywords[4].display_name | Cognitive science |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.31530243158340454 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.312874972820282 |
| keywords[6].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.10571 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.10571 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.10571 |
| locations[1].id | doi:10.48550/arxiv.2207.10571 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.10571 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032530535 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7419-4712 |
| authorships[0].author.display_name | Alexandre Benatti |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177909021, https://openalex.org/I17974374 |
| authorships[0].affiliations[0].raw_affiliation_string | São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil. |
| authorships[0].institutions[0].id | https://openalex.org/I177909021 |
| authorships[0].institutions[0].ror | https://ror.org/00qdc6m37 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177909021 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Federal de São Carlos |
| authorships[0].institutions[1].id | https://openalex.org/I17974374 |
| authorships[0].institutions[1].ror | https://ror.org/036rp1748 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I17974374 |
| authorships[0].institutions[1].country_code | BR |
| authorships[0].institutions[1].display_name | Universidade de São Paulo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexandre Benatti |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil. |
| authorships[1].author.id | https://openalex.org/A5085599698 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4325-6888 |
| authorships[1].author.display_name | Henrique Ferraz de Arruda |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177909021, https://openalex.org/I17974374 |
| authorships[1].affiliations[0].raw_affiliation_string | São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil. |
| authorships[1].affiliations[1].raw_affiliation_string | CENTAI Institute, Turin, Italy. |
| authorships[1].institutions[0].id | https://openalex.org/I177909021 |
| authorships[1].institutions[0].ror | https://ror.org/00qdc6m37 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177909021 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Federal de São Carlos |
| authorships[1].institutions[1].id | https://openalex.org/I17974374 |
| authorships[1].institutions[1].ror | https://ror.org/036rp1748 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I17974374 |
| authorships[1].institutions[1].country_code | BR |
| authorships[1].institutions[1].display_name | Universidade de São Paulo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Henrique F. de Arruda |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CENTAI Institute, Turin, Italy., São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil. |
| authorships[2].author.id | https://openalex.org/A5090050301 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9665-0830 |
| authorships[2].author.display_name | Luciano Costa |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177909021, https://openalex.org/I17974374 |
| authorships[2].affiliations[0].raw_affiliation_string | São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil. |
| authorships[2].institutions[0].id | https://openalex.org/I177909021 |
| authorships[2].institutions[0].ror | https://ror.org/00qdc6m37 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177909021 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Universidade Federal de São Carlos |
| authorships[2].institutions[1].id | https://openalex.org/I17974374 |
| authorships[2].institutions[1].ror | https://ror.org/036rp1748 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I17974374 |
| authorships[2].institutions[1].country_code | BR |
| authorships[2].institutions[1].display_name | Universidade de São Paulo |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Luciano da F. Costa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.10571 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Neuromorphic Networks as Revealed by Features Similarity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12859 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Cell Image Analysis Techniques |
| related_works | https://openalex.org/W2986579802, https://openalex.org/W4389237622, https://openalex.org/W3108691306, https://openalex.org/W4385753159, https://openalex.org/W4200152843, https://openalex.org/W4214914769, https://openalex.org/W4387251107, https://openalex.org/W2166309310, https://openalex.org/W4317717548, https://openalex.org/W4297621941 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.10571 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.10571 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.10571 |
| primary_location.id | pmh:oai:arXiv.org:2207.10571 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.10571 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.10571 |
| publication_date | 2022-06-13 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2619970632, https://openalex.org/W1978186982, https://openalex.org/W4281743267, https://openalex.org/W2165586822, https://openalex.org/W3214637675, https://openalex.org/W4280639114, https://openalex.org/W2051529918, https://openalex.org/W2169331639, https://openalex.org/W2167482691, https://openalex.org/W2949808130, https://openalex.org/W1510964369, https://openalex.org/W1493298820, https://openalex.org/W4225342724, https://openalex.org/W2061186544, https://openalex.org/W4280498341, https://openalex.org/W2000904439, https://openalex.org/W2029173860, https://openalex.org/W2341807954, https://openalex.org/W4242119294, https://openalex.org/W2327620174, https://openalex.org/W2796210736, https://openalex.org/W4281679967, https://openalex.org/W3016007634, https://openalex.org/W3032283600, https://openalex.org/W2775091018, https://openalex.org/W2055486545, https://openalex.org/W2157567469, https://openalex.org/W4283719164, https://openalex.org/W2146591355, https://openalex.org/W2144674276, https://openalex.org/W4286900933, https://openalex.org/W2094212004, https://openalex.org/W2193229373, https://openalex.org/W2807113328, https://openalex.org/W2159993152, https://openalex.org/W2151936673, https://openalex.org/W2792596707, https://openalex.org/W2191239308, https://openalex.org/W2883596583, https://openalex.org/W2784261605, https://openalex.org/W2902694436, https://openalex.org/W2074633779, https://openalex.org/W2043544484, https://openalex.org/W4292478130, https://openalex.org/W2061628168, https://openalex.org/W2321155245, https://openalex.org/W2075802998, https://openalex.org/W3123309518, https://openalex.org/W4200629158, https://openalex.org/W2789873027, https://openalex.org/W4296251476, https://openalex.org/W4281653256, https://openalex.org/W4390853327, https://openalex.org/W4243388411 |
| referenced_works_count | 54 |
| abstract_inverted_index.A | 135 |
| abstract_inverted_index.a | 19, 54, 121 |
| abstract_inverted_index.20 | 91 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.as | 18, 51, 53 |
| abstract_inverted_index.by | 44, 102, 151 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 2, 25, 48, 90, 124, 137, 154 |
| abstract_inverted_index.to | 21, 69, 111 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.(in | 107 |
| abstract_inverted_index.735 | 131 |
| abstract_inverted_index.The | 0, 63 |
| abstract_inverted_index.and | 27, 33, 81, 96, 146 |
| abstract_inverted_index.but | 16 |
| abstract_inverted_index.for | 9, 58 |
| abstract_inverted_index.has | 66 |
| abstract_inverted_index.its | 10 |
| abstract_inverted_index.not | 7 |
| abstract_inverted_index.one | 153 |
| abstract_inverted_index.the | 36, 46, 97, 104, 112, 125, 130, 141, 155 |
| abstract_inverted_index.was | 148 |
| abstract_inverted_index.also | 17, 149 |
| abstract_inverted_index.been | 67 |
| abstract_inverted_index.have | 76 |
| abstract_inverted_index.into | 61 |
| abstract_inverted_index.main | 126 |
| abstract_inverted_index.only | 8 |
| abstract_inverted_index.rich | 122 |
| abstract_inverted_index.some | 71 |
| abstract_inverted_index.than | 29 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.well | 52 |
| abstract_inverted_index.were | 94, 100, 117 |
| abstract_inverted_index.with | 13 |
| abstract_inverted_index.allow | 70 |
| abstract_inverted_index.among | 30 |
| abstract_inverted_index.cells | 26, 145 |
| abstract_inverted_index.found | 68 |
| abstract_inverted_index.means | 20 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.types | 24 |
| abstract_inverted_index.using | 45 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.work, | 38 |
| abstract_inverted_index.cells. | 134 |
| abstract_inverted_index.groups | 116, 147 |
| abstract_inverted_index.method | 57 |
| abstract_inverted_index.tasks. | 87 |
| abstract_inverted_index.Several | 88 |
| abstract_inverted_index.allowed | 77 |
| abstract_inverted_index.between | 129, 144 |
| abstract_inverted_index.compare | 28 |
| abstract_inverted_index.concept | 47 |
| abstract_inverted_index.derived | 56 |
| abstract_inverted_index.diverse | 23 |
| abstract_inverted_index.literal | 105 |
| abstract_inverted_index.manner) | 109 |
| abstract_inverted_index.mapping | 59 |
| abstract_inverted_index.merging | 143 |
| abstract_inverted_index.network | 138 |
| abstract_inverted_index.organs, | 32 |
| abstract_inverted_index.pattern | 85 |
| abstract_inverted_index.present | 37 |
| abstract_inverted_index.problem | 43 |
| abstract_inverted_index.provide | 120 |
| abstract_inverted_index.several | 84 |
| abstract_inverted_index.varying | 152 |
| abstract_inverted_index.approach | 40 |
| abstract_inverted_index.classify | 22 |
| abstract_inverted_index.datasets | 60 |
| abstract_inverted_index.enhanced | 78 |
| abstract_inverted_index.features | 93 |
| abstract_inverted_index.involved | 113 |
| abstract_inverted_index.networks | 99 |
| abstract_inverted_index.neuronal | 3, 14, 133 |
| abstract_inverted_index.obtained | 101, 118, 150 |
| abstract_inverted_index.sequence | 136 |
| abstract_inverted_index.species, | 31 |
| abstract_inverted_index.specific | 72 |
| abstract_inverted_index.dynamics, | 15 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.networks. | 62 |
| abstract_inverted_index.potential | 11 |
| abstract_inverted_index.concerning | 83 |
| abstract_inverted_index.considered | 132 |
| abstract_inverted_index.maximizing | 103 |
| abstract_inverted_index.modularity | 106 |
| abstract_inverted_index.morphology | 4 |
| abstract_inverted_index.properties | 74 |
| abstract_inverted_index.respective | 98 |
| abstract_inverted_index.similarity | 65, 127 |
| abstract_inverted_index.supervised | 108 |
| abstract_inverted_index.coincidence | 49, 64, 156 |
| abstract_inverted_index.conditions. | 34 |
| abstract_inverted_index.considered, | 95 |
| abstract_inverted_index.interesting | 42, 73 |
| abstract_inverted_index.parameters. | 114, 157 |
| abstract_inverted_index.performance | 79 |
| abstract_inverted_index.progressive | 142 |
| abstract_inverted_index.recognition | 86 |
| abstract_inverted_index.similarity, | 50 |
| abstract_inverted_index.(selectivity | 80 |
| abstract_inverted_index.combinations | 89 |
| abstract_inverted_index.illustrating | 140 |
| abstract_inverted_index.relationship | 12 |
| abstract_inverted_index.respectively | 55, 110 |
| abstract_inverted_index.sensitivity) | 82 |
| abstract_inverted_index.morphological | 92 |
| abstract_inverted_index.Well-separated | 115 |
| abstract_inverted_index.configurations | 139 |
| abstract_inverted_index.representation | 123 |
| abstract_inverted_index.interrelationships | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |