NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1903.03704
Hamiltonian Monte Carlo is a powerful algorithm for sampling from difficult-to-normalize posterior distributions. However, when the geometry of the posterior is unfavorable, it may take many expensive evaluations of the target distribution and its gradient to converge and mix. We propose neural transport (NeuTra) HMC, a technique for learning to correct this sort of unfavorable geometry using inverse autoregressive flows (IAF), a powerful neural variational inference technique. The IAF is trained to minimize the KL divergence from an isotropic Gaussian to the warped posterior, and then HMC sampling is performed in the warped space. We evaluate NeuTra HMC on a variety of synthetic and real problems, and find that it significantly outperforms vanilla HMC both in time to reach the stationary distribution and asymptotic effective-sample-size rates.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1903.03704
- https://arxiv.org/pdf/1903.03704
- OA Status
- green
- Cited By
- 65
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2920868047
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2920868047Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1903.03704Digital Object Identifier
- Title
-
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural TransportWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-09Full publication date if available
- Authors
-
Dustin Tran, Ian Langmore, Joshua S. Dillon, Matthew D. Hoffman, Pavel Sountsov, Vasudevan SrinivasList of authors in order
- Landing page
-
https://arxiv.org/abs/1903.03704Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1903.03704Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1903.03704Direct OA link when available
- Concepts
-
Monte Carlo method, Gaussian, Autoregressive model, Hybrid Monte Carlo, Isotropy, Statistical physics, Mathematics, Posterior probability, Markov chain Monte Carlo, Applied mathematics, Algorithm, Computer science, Bayesian probability, Physics, Statistics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
65Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 9, 2022: 6, 2021: 21Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2920868047 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1903.03704 |
| ids.doi | https://doi.org/10.48550/arxiv.1903.03704 |
| ids.mag | 2920868047 |
| ids.openalex | https://openalex.org/W2920868047 |
| fwci | |
| type | preprint |
| title | NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12056 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Markov Chains and Monte Carlo Methods |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6286296248435974 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C163716315 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5760224461555481 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[1].display_name | Gaussian |
| concepts[2].id | https://openalex.org/C159877910 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5657373666763306 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[2].display_name | Autoregressive model |
| concepts[3].id | https://openalex.org/C13153151 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5525712966918945 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1639846 |
| concepts[3].display_name | Hybrid Monte Carlo |
| concepts[4].id | https://openalex.org/C184050105 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48771628737449646 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q273163 |
| concepts[4].display_name | Isotropy |
| concepts[5].id | https://openalex.org/C121864883 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4619380235671997 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[5].display_name | Statistical physics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4342394173145294 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C57830394 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4301595091819763 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[7].display_name | Posterior probability |
| concepts[8].id | https://openalex.org/C111350023 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4140084981918335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[8].display_name | Markov chain Monte Carlo |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3717992901802063 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35230255126953125 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3400540351867676 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C107673813 |
| concepts[12].level | 2 |
| concepts[12].score | 0.31631171703338623 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[12].display_name | Bayesian probability |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2625941038131714 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.20034447312355042 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.6286296248435974 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/gaussian |
| keywords[1].score | 0.5760224461555481 |
| keywords[1].display_name | Gaussian |
| keywords[2].id | https://openalex.org/keywords/autoregressive-model |
| keywords[2].score | 0.5657373666763306 |
| keywords[2].display_name | Autoregressive model |
| keywords[3].id | https://openalex.org/keywords/hybrid-monte-carlo |
| keywords[3].score | 0.5525712966918945 |
| keywords[3].display_name | Hybrid Monte Carlo |
| keywords[4].id | https://openalex.org/keywords/isotropy |
| keywords[4].score | 0.48771628737449646 |
| keywords[4].display_name | Isotropy |
| keywords[5].id | https://openalex.org/keywords/statistical-physics |
| keywords[5].score | 0.4619380235671997 |
| keywords[5].display_name | Statistical physics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.4342394173145294 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/posterior-probability |
| keywords[7].score | 0.4301595091819763 |
| keywords[7].display_name | Posterior probability |
| keywords[8].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[8].score | 0.4140084981918335 |
| keywords[8].display_name | Markov chain Monte Carlo |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.3717992901802063 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.35230255126953125 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3400540351867676 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/bayesian-probability |
| keywords[12].score | 0.31631171703338623 |
| keywords[12].display_name | Bayesian probability |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.2625941038131714 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.20034447312355042 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1903.03704 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1903.03704 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1903.03704 |
| locations[1].id | doi:10.48550/arxiv.1903.03704 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1903.03704 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5081819708 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3715-5378 |
| authorships[0].author.display_name | Dustin Tran |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[0].affiliations[0].raw_affiliation_string | Google,,,,, |
| authorships[0].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[0].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Google (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dustin Tran |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Google,,,,, |
| authorships[1].author.id | https://openalex.org/A5002908234 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ian Langmore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ian Langmore |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024608470 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3336-9958 |
| authorships[2].author.display_name | Joshua S. Dillon |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Josh Dillon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109851187 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Matthew D. Hoffman |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[3].affiliations[0].raw_affiliation_string | Google,,,,, |
| authorships[3].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[3].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Google (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Matthew D. Hoffman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google,,,,, |
| authorships[4].author.id | https://openalex.org/A5008991598 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Pavel Sountsov |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pavel Sountsov |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5109582127 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Vasudevan Srinivas |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Srinivas Vasudevan |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1903.03704 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-03-22T00:00:00 |
| display_name | NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12056 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Markov Chains and Monte Carlo Methods |
| related_works | https://openalex.org/W4226314133, https://openalex.org/W2305965628, https://openalex.org/W3098348269, https://openalex.org/W4248057375, https://openalex.org/W2974901631, https://openalex.org/W227870709, https://openalex.org/W71678127, https://openalex.org/W2959831473, https://openalex.org/W4323055853, https://openalex.org/W2157655363 |
| cited_by_count | 65 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 21 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 18 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1903.03704 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1903.03704 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1903.03704 |
| primary_location.id | pmh:oai:arXiv.org:1903.03704 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1903.03704 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1903.03704 |
| publication_date | 2019-03-09 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2886496274, https://openalex.org/W1959608418, https://openalex.org/W2160065175, https://openalex.org/W2135973421, https://openalex.org/W2572702041, https://openalex.org/W2972588190, https://openalex.org/W2963467180, https://openalex.org/W2963285578, https://openalex.org/W299440670, https://openalex.org/W2403726878, https://openalex.org/W1906598733, https://openalex.org/W2964121744, https://openalex.org/W2962897886, https://openalex.org/W2148534890, https://openalex.org/W2963977107, https://openalex.org/W2739517340, https://openalex.org/W2561050497, https://openalex.org/W2977230103, https://openalex.org/W2138309709, https://openalex.org/W2279346308, https://openalex.org/W2746461338, https://openalex.org/W3099467939, https://openalex.org/W2056760934, https://openalex.org/W2742689864, https://openalex.org/W2806061475, https://openalex.org/W1545319692, https://openalex.org/W2962887178, https://openalex.org/W2903692257 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 4, 45, 61, 99 |
| abstract_inverted_index.KL | 74 |
| abstract_inverted_index.We | 39, 94 |
| abstract_inverted_index.an | 77 |
| abstract_inverted_index.in | 90, 115 |
| abstract_inverted_index.is | 3, 20, 69, 88 |
| abstract_inverted_index.it | 22, 109 |
| abstract_inverted_index.of | 17, 28, 53, 101 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.to | 35, 49, 71, 80, 117 |
| abstract_inverted_index.HMC | 86, 97, 113 |
| abstract_inverted_index.IAF | 68 |
| abstract_inverted_index.The | 67 |
| abstract_inverted_index.and | 32, 37, 84, 103, 106, 122 |
| abstract_inverted_index.for | 7, 47 |
| abstract_inverted_index.its | 33 |
| abstract_inverted_index.may | 23 |
| abstract_inverted_index.the | 15, 18, 29, 73, 81, 91, 119 |
| abstract_inverted_index.HMC, | 44 |
| abstract_inverted_index.both | 114 |
| abstract_inverted_index.find | 107 |
| abstract_inverted_index.from | 9, 76 |
| abstract_inverted_index.many | 25 |
| abstract_inverted_index.mix. | 38 |
| abstract_inverted_index.real | 104 |
| abstract_inverted_index.sort | 52 |
| abstract_inverted_index.take | 24 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.then | 85 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.time | 116 |
| abstract_inverted_index.when | 14 |
| abstract_inverted_index.Carlo | 2 |
| abstract_inverted_index.Monte | 1 |
| abstract_inverted_index.flows | 59 |
| abstract_inverted_index.reach | 118 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.(IAF), | 60 |
| abstract_inverted_index.NeuTra | 96 |
| abstract_inverted_index.neural | 41, 63 |
| abstract_inverted_index.rates. | 125 |
| abstract_inverted_index.space. | 93 |
| abstract_inverted_index.target | 30 |
| abstract_inverted_index.warped | 82, 92 |
| abstract_inverted_index.correct | 50 |
| abstract_inverted_index.inverse | 57 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.trained | 70 |
| abstract_inverted_index.vanilla | 112 |
| abstract_inverted_index.variety | 100 |
| abstract_inverted_index.(NeuTra) | 43 |
| abstract_inverted_index.Gaussian | 79 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.converge | 36 |
| abstract_inverted_index.evaluate | 95 |
| abstract_inverted_index.geometry | 16, 55 |
| abstract_inverted_index.gradient | 34 |
| abstract_inverted_index.learning | 48 |
| abstract_inverted_index.minimize | 72 |
| abstract_inverted_index.powerful | 5, 62 |
| abstract_inverted_index.sampling | 8, 87 |
| abstract_inverted_index.algorithm | 6 |
| abstract_inverted_index.expensive | 26 |
| abstract_inverted_index.inference | 65 |
| abstract_inverted_index.isotropic | 78 |
| abstract_inverted_index.performed | 89 |
| abstract_inverted_index.posterior | 11, 19 |
| abstract_inverted_index.problems, | 105 |
| abstract_inverted_index.synthetic | 102 |
| abstract_inverted_index.technique | 46 |
| abstract_inverted_index.transport | 42 |
| abstract_inverted_index.asymptotic | 123 |
| abstract_inverted_index.divergence | 75 |
| abstract_inverted_index.posterior, | 83 |
| abstract_inverted_index.stationary | 120 |
| abstract_inverted_index.technique. | 66 |
| abstract_inverted_index.Hamiltonian | 0 |
| abstract_inverted_index.evaluations | 27 |
| abstract_inverted_index.outperforms | 111 |
| abstract_inverted_index.unfavorable | 54 |
| abstract_inverted_index.variational | 64 |
| abstract_inverted_index.distribution | 31, 121 |
| abstract_inverted_index.unfavorable, | 21 |
| abstract_inverted_index.significantly | 110 |
| abstract_inverted_index.autoregressive | 58 |
| abstract_inverted_index.distributions. | 12 |
| abstract_inverted_index.effective-sample-size | 124 |
| abstract_inverted_index.difficult-to-normalize | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |