New methodology to detect the effects of emotions on different biometrics in real time Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.11591/ijece.v13i2.pp1358-1366
Recently, some problems have appeared among medical workers during the diagnosis of some diseases due to human errors or the lack of sufficient information for the diagnosis. In medical diagnosis, doctors always resort to separating human emotions and their impact on vital parameters. In this paper, a methodology is presented to measure vital parameters more accurately while studying the effect of different human emotions on vital signs. Two designs were implemented based on the microcontroller and National Instruments (NI) myRIO. Measurements of four different vital parameters are measured and recorded in real time. At the same time, the effects of different emotions on those vital parameters are recorded and stored for use in analysis and early diagnosis. The results proved that the proposed methodology can contribute to the prediction and diagnosis of the initial symptoms of some diseases such as the seventh nerve and Parkinson’s disease. The two proposed designs are compared with the reference device (beurer) results. The design using NI myRIO achieved more accurate results and a response time of 1.4 seconds for real-time measurements compared to its counterpart based on microcontrollers, which qualifies it to work in intensive care units.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijece.v13i2.pp1358-1366
- https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335
- OA Status
- diamond
- Cited By
- 2
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311537411
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311537411Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijece.v13i2.pp1358-1366Digital Object Identifier
- Title
-
New methodology to detect the effects of emotions on different biometrics in real timeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-11Full publication date if available
- Authors
-
Yahia Zakria Abd Elgawad, Mohamed Youssef, Tarek Mahmoud NasserList of authors in order
- Landing page
-
https://doi.org/10.11591/ijece.v13i2.pp1358-1366Publisher landing page
- PDF URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335Direct OA link when available
- Concepts
-
Microcontroller, Computer science, Vital signs, Biometrics, Measure (data warehouse), Artificial intelligence, Simulation, Real-time computing, Medicine, Data mining, Embedded system, SurgeryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311537411 |
|---|---|
| doi | https://doi.org/10.11591/ijece.v13i2.pp1358-1366 |
| ids.doi | https://doi.org/10.11591/ijece.v13i2.pp1358-1366 |
| ids.openalex | https://openalex.org/W4311537411 |
| fwci | 0.22199474 |
| type | article |
| title | New methodology to detect the effects of emotions on different biometrics in real time |
| biblio.issue | 2 |
| biblio.volume | 13 |
| biblio.last_page | 1358 |
| biblio.first_page | 1358 |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.5167999863624573 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.49160000681877136 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C173018170 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6665442585945129 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q165678 |
| concepts[0].display_name | Microcontroller |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6160614490509033 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776890885 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5827092528343201 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1067560 |
| concepts[2].display_name | Vital signs |
| concepts[3].id | https://openalex.org/C184297639 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5239988565444946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177765 |
| concepts[3].display_name | Biometrics |
| concepts[4].id | https://openalex.org/C2780009758 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47982192039489746 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[4].display_name | Measure (data warehouse) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37649306654930115 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C44154836 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3664659559726715 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[6].display_name | Simulation |
| concepts[7].id | https://openalex.org/C79403827 |
| concepts[7].level | 1 |
| concepts[7].score | 0.321203351020813 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[7].display_name | Real-time computing |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.25631284713745117 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23348340392112732 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C149635348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21456795930862427 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[10].display_name | Embedded system |
| concepts[11].id | https://openalex.org/C141071460 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0978291928768158 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[11].display_name | Surgery |
| keywords[0].id | https://openalex.org/keywords/microcontroller |
| keywords[0].score | 0.6665442585945129 |
| keywords[0].display_name | Microcontroller |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6160614490509033 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/vital-signs |
| keywords[2].score | 0.5827092528343201 |
| keywords[2].display_name | Vital signs |
| keywords[3].id | https://openalex.org/keywords/biometrics |
| keywords[3].score | 0.5239988565444946 |
| keywords[3].display_name | Biometrics |
| keywords[4].id | https://openalex.org/keywords/measure |
| keywords[4].score | 0.47982192039489746 |
| keywords[4].display_name | Measure (data warehouse) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.37649306654930115 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/simulation |
| keywords[6].score | 0.3664659559726715 |
| keywords[6].display_name | Simulation |
| keywords[7].id | https://openalex.org/keywords/real-time-computing |
| keywords[7].score | 0.321203351020813 |
| keywords[7].display_name | Real-time computing |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.25631284713745117 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.23348340392112732 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/embedded-system |
| keywords[10].score | 0.21456795930862427 |
| keywords[10].display_name | Embedded system |
| keywords[11].id | https://openalex.org/keywords/surgery |
| keywords[11].score | 0.0978291928768158 |
| keywords[11].display_name | Surgery |
| language | en |
| locations[0].id | doi:10.11591/ijece.v13i2.pp1358-1366 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235676 |
| locations[0].source.issn | 2722-256X, 2722-2578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2722-256X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijece.v13i2.pp1358-1366 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112881379 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yahia Zakria Abd Elgawad |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210125886 |
| authorships[0].affiliations[0].raw_affiliation_string | Al-Azhar University |
| authorships[0].institutions[0].id | https://openalex.org/I4210125886 |
| authorships[0].institutions[0].ror | https://ror.org/03ewepe58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210125886 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Al-Azhar University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yahia Zakria Abd Elgawad |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Al-Azhar University |
| authorships[1].author.id | https://openalex.org/A5048616318 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-7581-8031 |
| authorships[1].author.display_name | Mohamed Youssef |
| authorships[1].affiliations[0].raw_affiliation_string | Mohamed I. Youssef |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed I. Youssef |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mohamed I. Youssef |
| authorships[2].author.id | https://openalex.org/A5069908151 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5198-9766 |
| authorships[2].author.display_name | Tarek Mahmoud Nasser |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210125886 |
| authorships[2].affiliations[0].raw_affiliation_string | Al-Azhar University |
| authorships[2].institutions[0].id | https://openalex.org/I4210125886 |
| authorships[2].institutions[0].ror | https://ror.org/03ewepe58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210125886 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Al-Azhar University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tarek Mahmoud Nasser |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Al-Azhar University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | New methodology to detect the effects of emotions on different biometrics in real time |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.5167999863624573 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W135666085, https://openalex.org/W2053514191, https://openalex.org/W30340901, https://openalex.org/W4205307318, https://openalex.org/W2162926135, https://openalex.org/W2087901682, https://openalex.org/W3005991535, https://openalex.org/W4285102294, https://openalex.org/W2052460383, https://openalex.org/W3948632 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijece.v13i2.pp1358-1366 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235676 |
| best_oa_location.source.issn | 2722-256X, 2722-2578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2722-256X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijece.v13i2.pp1358-1366 |
| primary_location.id | doi:10.11591/ijece.v13i2.pp1358-1366 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235676 |
| primary_location.source.issn | 2722-256X, 2722-2578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2722-256X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | https://ijece.iaescore.com/index.php/IJECE/article/download/27731/16335 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijece.v13i2.pp1358-1366 |
| publication_date | 2022-12-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3003619853, https://openalex.org/W3019359258, https://openalex.org/W3192765171, https://openalex.org/W3184742512, https://openalex.org/W3138799169, https://openalex.org/W3161252969, https://openalex.org/W3171102592, https://openalex.org/W3213743610, https://openalex.org/W4214834859, https://openalex.org/W3041205995, https://openalex.org/W2765192034, https://openalex.org/W4205676394, https://openalex.org/W3155733825, https://openalex.org/W3016561630, https://openalex.org/W3020090490, https://openalex.org/W3011377145, https://openalex.org/W3031008325, https://openalex.org/W3165934188, https://openalex.org/W2147273498, https://openalex.org/W2163215699, https://openalex.org/W2605393098, https://openalex.org/W3188616592, https://openalex.org/W3204105843, https://openalex.org/W2921716175, https://openalex.org/W2772211093, https://openalex.org/W2783342609, https://openalex.org/W3157805915, https://openalex.org/W2162800060, https://openalex.org/W4236215791 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 47, 169 |
| abstract_inverted_index.At | 94 |
| abstract_inverted_index.In | 28, 44 |
| abstract_inverted_index.NI | 162 |
| abstract_inverted_index.as | 140 |
| abstract_inverted_index.in | 91, 113, 190 |
| abstract_inverted_index.is | 49 |
| abstract_inverted_index.it | 187 |
| abstract_inverted_index.of | 12, 22, 61, 82, 100, 132, 136, 172 |
| abstract_inverted_index.on | 41, 65, 73, 103, 183 |
| abstract_inverted_index.or | 19 |
| abstract_inverted_index.to | 16, 34, 51, 127, 179, 188 |
| abstract_inverted_index.1.4 | 173 |
| abstract_inverted_index.The | 118, 147, 159 |
| abstract_inverted_index.Two | 68 |
| abstract_inverted_index.and | 38, 76, 89, 109, 115, 130, 144, 168 |
| abstract_inverted_index.are | 87, 107, 151 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.for | 25, 111, 175 |
| abstract_inverted_index.its | 180 |
| abstract_inverted_index.the | 10, 20, 26, 59, 74, 95, 98, 122, 128, 133, 141, 154 |
| abstract_inverted_index.two | 148 |
| abstract_inverted_index.use | 112 |
| abstract_inverted_index.(NI) | 79 |
| abstract_inverted_index.care | 192 |
| abstract_inverted_index.four | 83 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.lack | 21 |
| abstract_inverted_index.more | 55, 165 |
| abstract_inverted_index.real | 92 |
| abstract_inverted_index.same | 96 |
| abstract_inverted_index.some | 2, 13, 137 |
| abstract_inverted_index.such | 139 |
| abstract_inverted_index.that | 121 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.time | 171 |
| abstract_inverted_index.were | 70 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.work | 189 |
| abstract_inverted_index.among | 6 |
| abstract_inverted_index.based | 72, 182 |
| abstract_inverted_index.early | 116 |
| abstract_inverted_index.human | 17, 36, 63 |
| abstract_inverted_index.myRIO | 163 |
| abstract_inverted_index.nerve | 143 |
| abstract_inverted_index.their | 39 |
| abstract_inverted_index.those | 104 |
| abstract_inverted_index.time, | 97 |
| abstract_inverted_index.time. | 93 |
| abstract_inverted_index.using | 161 |
| abstract_inverted_index.vital | 42, 53, 66, 85, 105 |
| abstract_inverted_index.which | 185 |
| abstract_inverted_index.while | 57 |
| abstract_inverted_index.always | 32 |
| abstract_inverted_index.design | 160 |
| abstract_inverted_index.device | 156 |
| abstract_inverted_index.during | 9 |
| abstract_inverted_index.effect | 60 |
| abstract_inverted_index.errors | 18 |
| abstract_inverted_index.impact | 40 |
| abstract_inverted_index.myRIO. | 80 |
| abstract_inverted_index.paper, | 46 |
| abstract_inverted_index.proved | 120 |
| abstract_inverted_index.resort | 33 |
| abstract_inverted_index.signs. | 67 |
| abstract_inverted_index.stored | 110 |
| abstract_inverted_index.designs | 69, 150 |
| abstract_inverted_index.doctors | 31 |
| abstract_inverted_index.effects | 99 |
| abstract_inverted_index.initial | 134 |
| abstract_inverted_index.measure | 52 |
| abstract_inverted_index.medical | 7, 29 |
| abstract_inverted_index.results | 119, 167 |
| abstract_inverted_index.seconds | 174 |
| abstract_inverted_index.seventh | 142 |
| abstract_inverted_index.workers | 8 |
| abstract_inverted_index.<span | 0 |
| abstract_inverted_index.(beurer) | 157 |
| abstract_inverted_index.National | 77 |
| abstract_inverted_index.accurate | 166 |
| abstract_inverted_index.achieved | 164 |
| abstract_inverted_index.analysis | 114 |
| abstract_inverted_index.appeared | 5 |
| abstract_inverted_index.compared | 152, 178 |
| abstract_inverted_index.disease. | 146 |
| abstract_inverted_index.diseases | 14, 138 |
| abstract_inverted_index.emotions | 37, 64, 102 |
| abstract_inverted_index.measured | 88 |
| abstract_inverted_index.problems | 3 |
| abstract_inverted_index.proposed | 123, 149 |
| abstract_inverted_index.recorded | 90, 108 |
| abstract_inverted_index.response | 170 |
| abstract_inverted_index.results. | 158 |
| abstract_inverted_index.studying | 58 |
| abstract_inverted_index.symptoms | 135 |
| abstract_inverted_index.diagnosis | 11, 131 |
| abstract_inverted_index.different | 62, 84, 101 |
| abstract_inverted_index.intensive | 191 |
| abstract_inverted_index.presented | 50 |
| abstract_inverted_index.qualifies | 186 |
| abstract_inverted_index.real-time | 176 |
| abstract_inverted_index.reference | 155 |
| abstract_inverted_index.accurately | 56 |
| abstract_inverted_index.contribute | 126 |
| abstract_inverted_index.diagnosis, | 30 |
| abstract_inverted_index.diagnosis. | 27, 117 |
| abstract_inverted_index.parameters | 54, 86, 106 |
| abstract_inverted_index.prediction | 129 |
| abstract_inverted_index.separating | 35 |
| abstract_inverted_index.sufficient | 23 |
| abstract_inverted_index.Instruments | 78 |
| abstract_inverted_index.counterpart | 181 |
| abstract_inverted_index.implemented | 71 |
| abstract_inverted_index.information | 24 |
| abstract_inverted_index.methodology | 48, 124 |
| abstract_inverted_index.parameters. | 43 |
| abstract_inverted_index.Measurements | 81 |
| abstract_inverted_index.measurements | 177 |
| abstract_inverted_index.Parkinson’s | 145 |
| abstract_inverted_index.microcontroller | 75 |
| abstract_inverted_index.microcontrollers, | 184 |
| abstract_inverted_index.units.</span> | 193 |
| abstract_inverted_index.lang="EN-US">Recently, | 1 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.45368461 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |