New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.64389/mjs.2025.01111
The beta regression model (BRM) is widely used for analyzing bounded response variables, such as proportions, percentages. However, when multicollinearity exists among explanatory variables, the conventional maximum likelihood estimator (MLE) becomes unstable and inefficient. To address this issue, we propose new modified Liu estimators for the BRM, designed to enhance estimation accuracy in the presence of high multicollinearity among predictors. The proposed estimators extend the traditional Liu estimator by incorporating flexible biasing parameters, offering a more robust alternative to the MLE. Theoretical comparisons demonstrate the superiority of the new estimators over existing methods. Additionally, Monte Carlo simulations and real-world applications evidence their improved performance in terms of mean squared error (MSE) and mean absolute error (MAE). The results indicate that the proposed estimators significantly reduce estimation bias and variance under multicollinearity, providing more reliable regression coefficients.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.64389/mjs.2025.01111
- https://sphinxsp.org/journal/index.php/mjs/article/download/11/11
- OA Status
- hybrid
- Cited By
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412750057
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412750057Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.64389/mjs.2025.01111Digital Object Identifier
- Title
-
New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-12Full publication date if available
- Authors
-
Ali Hammad, E. H. Hafez, Usman Shahzad, Elif Yıldırım, Ehab M. Almetwally, B. M. Golam KibriaList of authors in order
- Landing page
-
https://doi.org/10.64389/mjs.2025.01111Publisher landing page
- PDF URL
-
https://sphinxsp.org/journal/index.php/mjs/article/download/11/11Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://sphinxsp.org/journal/index.php/mjs/article/download/11/11Direct OA link when available
- Concepts
-
Multicollinearity, Estimator, Statistics, Regression analysis, Variance inflation factor, Econometrics, Computer science, BETA (programming language), Mathematics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412750057 |
|---|---|
| doi | https://doi.org/10.64389/mjs.2025.01111 |
| ids.doi | https://doi.org/10.64389/mjs.2025.01111 |
| ids.openalex | https://openalex.org/W4412750057 |
| fwci | 80.16438071 |
| type | article |
| title | New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications |
| biblio.issue | 1 |
| biblio.volume | 1 |
| biblio.last_page | 79 |
| biblio.first_page | 58 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9624999761581421 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C189285262 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9575916528701782 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1332350 |
| concepts[0].display_name | Multicollinearity |
| concepts[1].id | https://openalex.org/C185429906 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6587048172950745 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[1].display_name | Estimator |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5331453680992126 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C152877465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5263159275054932 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[3].display_name | Regression analysis |
| concepts[4].id | https://openalex.org/C152732102 |
| concepts[4].level | 4 |
| concepts[4].score | 0.4917026162147522 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13434396 |
| concepts[4].display_name | Variance inflation factor |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4602926969528198 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4505860209465027 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2776174256 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4338816702365875 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q830842 |
| concepts[7].display_name | BETA (programming language) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.369278222322464 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.05642029643058777 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/multicollinearity |
| keywords[0].score | 0.9575916528701782 |
| keywords[0].display_name | Multicollinearity |
| keywords[1].id | https://openalex.org/keywords/estimator |
| keywords[1].score | 0.6587048172950745 |
| keywords[1].display_name | Estimator |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.5331453680992126 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/regression-analysis |
| keywords[3].score | 0.5263159275054932 |
| keywords[3].display_name | Regression analysis |
| keywords[4].id | https://openalex.org/keywords/variance-inflation-factor |
| keywords[4].score | 0.4917026162147522 |
| keywords[4].display_name | Variance inflation factor |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.4602926969528198 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4505860209465027 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/beta |
| keywords[7].score | 0.4338816702365875 |
| keywords[7].display_name | BETA (programming language) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.369278222322464 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.05642029643058777 |
| keywords[9].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.64389/mjs.2025.01111 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407049012 |
| locations[0].source.issn | 3068-8140 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 3068-8140 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Modern Journal of Statistics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://sphinxsp.org/journal/index.php/mjs/article/download/11/11 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Modern Journal of Statistics |
| locations[0].landing_page_url | https://doi.org/10.64389/mjs.2025.01111 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5011064918 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ali Hammad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ali T. Hammad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112614787 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | E. H. Hafez |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eslam H. Hafez |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024125414 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0178-5298 |
| authorships[2].author.display_name | Usman Shahzad |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Usman Shahzad |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5058437753 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3171-655X |
| authorships[3].author.display_name | Elif Yıldırım |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Elif Yıldırım |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013570032 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3888-1275 |
| authorships[4].author.display_name | Ehab M. Almetwally |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ehab M. Almetwally |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5078876584 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6073-1978 |
| authorships[5].author.display_name | B. M. Golam Kibria |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | B. M. Golam Kibria |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://sphinxsp.org/journal/index.php/mjs/article/download/11/11 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9624999761581421 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2586047144, https://openalex.org/W1639044165, https://openalex.org/W3016675171, https://openalex.org/W3021591465, https://openalex.org/W2242826594, https://openalex.org/W4287781063, https://openalex.org/W3036573352, https://openalex.org/W3188410990, https://openalex.org/W1127100678, https://openalex.org/W2268505974 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| locations_count | 1 |
| best_oa_location.id | doi:10.64389/mjs.2025.01111 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407049012 |
| best_oa_location.source.issn | 3068-8140 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 3068-8140 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Modern Journal of Statistics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://sphinxsp.org/journal/index.php/mjs/article/download/11/11 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Modern Journal of Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.64389/mjs.2025.01111 |
| primary_location.id | doi:10.64389/mjs.2025.01111 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407049012 |
| primary_location.source.issn | 3068-8140 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 3068-8140 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Modern Journal of Statistics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://sphinxsp.org/journal/index.php/mjs/article/download/11/11 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Modern Journal of Statistics |
| primary_location.landing_page_url | https://doi.org/10.64389/mjs.2025.01111 |
| publication_date | 2025-07-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 74 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.in | 52, 104 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 55, 86, 106 |
| abstract_inverted_index.to | 48, 78 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.Liu | 42, 66 |
| abstract_inverted_index.The | 0, 60, 116 |
| abstract_inverted_index.and | 32, 97, 111, 127 |
| abstract_inverted_index.for | 8, 44 |
| abstract_inverted_index.new | 40, 88 |
| abstract_inverted_index.the | 24, 45, 53, 64, 79, 84, 87, 120 |
| abstract_inverted_index.BRM, | 46 |
| abstract_inverted_index.MLE. | 80 |
| abstract_inverted_index.beta | 1 |
| abstract_inverted_index.bias | 126 |
| abstract_inverted_index.high | 56 |
| abstract_inverted_index.mean | 107, 112 |
| abstract_inverted_index.more | 75, 132 |
| abstract_inverted_index.over | 90 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.when | 18 |
| abstract_inverted_index.(BRM) | 4 |
| abstract_inverted_index.(MLE) | 29 |
| abstract_inverted_index.(MSE) | 110 |
| abstract_inverted_index.Carlo | 95 |
| abstract_inverted_index.Monte | 94 |
| abstract_inverted_index.among | 21, 58 |
| abstract_inverted_index.error | 109, 114 |
| abstract_inverted_index.model | 3 |
| abstract_inverted_index.terms | 105 |
| abstract_inverted_index.their | 101 |
| abstract_inverted_index.under | 129 |
| abstract_inverted_index.(MAE). | 115 |
| abstract_inverted_index.exists | 20 |
| abstract_inverted_index.extend | 63 |
| abstract_inverted_index.issue, | 37 |
| abstract_inverted_index.reduce | 124 |
| abstract_inverted_index.robust | 76 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.becomes | 30 |
| abstract_inverted_index.biasing | 71 |
| abstract_inverted_index.bounded | 10 |
| abstract_inverted_index.enhance | 49 |
| abstract_inverted_index.maximum | 26 |
| abstract_inverted_index.propose | 39 |
| abstract_inverted_index.results | 117 |
| abstract_inverted_index.squared | 108 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.absolute | 113 |
| abstract_inverted_index.accuracy | 51 |
| abstract_inverted_index.designed | 47 |
| abstract_inverted_index.evidence | 100 |
| abstract_inverted_index.existing | 91 |
| abstract_inverted_index.flexible | 70 |
| abstract_inverted_index.improved | 102 |
| abstract_inverted_index.indicate | 118 |
| abstract_inverted_index.methods. | 92 |
| abstract_inverted_index.modified | 41 |
| abstract_inverted_index.offering | 73 |
| abstract_inverted_index.presence | 54 |
| abstract_inverted_index.proposed | 61, 121 |
| abstract_inverted_index.reliable | 133 |
| abstract_inverted_index.response | 11 |
| abstract_inverted_index.unstable | 31 |
| abstract_inverted_index.variance | 128 |
| abstract_inverted_index.analyzing | 9 |
| abstract_inverted_index.estimator | 28, 67 |
| abstract_inverted_index.providing | 131 |
| abstract_inverted_index.estimation | 50, 125 |
| abstract_inverted_index.estimators | 43, 62, 89, 122 |
| abstract_inverted_index.likelihood | 27 |
| abstract_inverted_index.real-world | 98 |
| abstract_inverted_index.regression | 2, 134 |
| abstract_inverted_index.variables, | 12, 23 |
| abstract_inverted_index.Theoretical | 81 |
| abstract_inverted_index.alternative | 77 |
| abstract_inverted_index.comparisons | 82 |
| abstract_inverted_index.demonstrate | 83 |
| abstract_inverted_index.explanatory | 22 |
| abstract_inverted_index.parameters, | 72 |
| abstract_inverted_index.performance | 103 |
| abstract_inverted_index.predictors. | 59 |
| abstract_inverted_index.simulations | 96 |
| abstract_inverted_index.superiority | 85 |
| abstract_inverted_index.traditional | 65 |
| abstract_inverted_index.applications | 99 |
| abstract_inverted_index.conventional | 25 |
| abstract_inverted_index.inefficient. | 33 |
| abstract_inverted_index.percentages. | 16 |
| abstract_inverted_index.proportions, | 15 |
| abstract_inverted_index.Additionally, | 93 |
| abstract_inverted_index.coefficients. | 135 |
| abstract_inverted_index.incorporating | 69 |
| abstract_inverted_index.significantly | 123 |
| abstract_inverted_index.multicollinearity | 19, 57 |
| abstract_inverted_index.multicollinearity, | 130 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.99827883 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |