New perturbation bounds for low rank approximation of matrices via contour analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.08875
Let $A$ be an $m \times n$ matrix with rank $r$ and spectral decomposition $A = \sum _{i=1}^r σ_i u_i v_i^\top, $ where $σ_i$ are its singular values, ordered decreasingly, and $u_i, v_i$ are the corresponding left and right singular vectors. For a parameter $1 \le p \le r$, $A_p := \sum_{i=1}^p σ_i u_i v_i^\top$ is the best rank $p$ approximation of $A$. In practice, one often chooses $p$ to be small, leading to the commonly used phrase "low-rank approximation". Low-rank approximation plays a central role in data science because it can substantially reduce the dimensionality of the original data, the matrix $A$. For a large data matrix $A$, one typically computes a rank-$p$ approximation $A_p$ for a suitably chosen small $p$, stores $A_p$, and uses it as input for further computations. The reduced dimension of $A_p$ enables faster computations and significant data compression. In practice, noise is inevitable. We often have access only to noisy data $\tilde A = A + E$, where $E$ represents the noise. Consequently, the low-rank approximation used as input in many downstream tasks is $\tilde A_p$, the best rank $p$ approximation of $\tilde A$, rather than $A_p$. Therefore, it is natural and important to estimate the error $ \| \tilde A_p - A_p \|$. In this paper, we develop a novel method (based on contour analysis) to bound $\| \tilde A_p - A_p \|$. We introduce new parameters that measure the skewness between the noise matrix $E$ and the singular vectors of $A$, and exploit these to obtain notable improvements, compared to classical approaches in the literature (using Eckart-Young-Mirsky theorem or Davis-Kahan theorem), in many settings. This method is of independent interest and has many further applications.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.08875
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7105700937
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105700937Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.08875Digital Object Identifier
- Title
-
New perturbation bounds for low rank approximation of matrices via contour analysisWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-12Full publication date if available
- Authors
-
Tran Phuc, Vu, VanList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.08875Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.08875Direct OA link when available
- Concepts
-
Low-rank approximation, Mathematics, Singular value decomposition, Dimension (graph theory), Computation, Singular value, Curse of dimensionality, Matrix (chemical analysis), Rank (graph theory), Matrix decomposition, Noise (video), Measure (data warehouse), Algorithm, Approximation error, Intrinsic dimension, Applied mathematics, Approximation algorithm, Moore–Penrose pseudoinverse, Skewness, Effective dimension, Upper and lower bounds, Approximation theory, Synthetic data, Matrix norm, Sparse matrix, Invertible matrix, Perturbation (astronomy), Noisy data, Combinatorics, Linear approximation, Discrete mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105700937 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.08875 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.08875 |
| ids.openalex | https://openalex.org/W7105700937 |
| fwci | 0.0 |
| type | preprint |
| title | New perturbation bounds for low rank approximation of matrices via contour analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C90199385 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7257249355316162 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6692777 |
| concepts[0].display_name | Low-rank approximation |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6530770063400269 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C22789450 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5979479551315308 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420904 |
| concepts[2].display_name | Singular value decomposition |
| concepts[3].id | https://openalex.org/C33676613 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5344828963279724 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[3].display_name | Dimension (graph theory) |
| concepts[4].id | https://openalex.org/C45374587 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5101740956306458 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[4].display_name | Computation |
| concepts[5].id | https://openalex.org/C109282560 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5088732242584229 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4166054 |
| concepts[5].display_name | Singular value |
| concepts[6].id | https://openalex.org/C111030470 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5049692392349243 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[6].display_name | Curse of dimensionality |
| concepts[7].id | https://openalex.org/C106487976 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46153220534324646 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[7].display_name | Matrix (chemical analysis) |
| concepts[8].id | https://openalex.org/C164226766 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4562743902206421 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[8].display_name | Rank (graph theory) |
| concepts[9].id | https://openalex.org/C42355184 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44831582903862 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1361088 |
| concepts[9].display_name | Matrix decomposition |
| concepts[10].id | https://openalex.org/C99498987 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4434335231781006 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[10].display_name | Noise (video) |
| concepts[11].id | https://openalex.org/C2780009758 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41872864961624146 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[11].display_name | Measure (data warehouse) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4115767776966095 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C122383733 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4018346667289734 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q865920 |
| concepts[13].display_name | Approximation error |
| concepts[14].id | https://openalex.org/C30732413 |
| concepts[14].level | 3 |
| concepts[14].score | 0.39750364422798157 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q17092636 |
| concepts[14].display_name | Intrinsic dimension |
| concepts[15].id | https://openalex.org/C28826006 |
| concepts[15].level | 1 |
| concepts[15].score | 0.38658544421195984 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[15].display_name | Applied mathematics |
| concepts[16].id | https://openalex.org/C148764684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.386076956987381 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[16].display_name | Approximation algorithm |
| concepts[17].id | https://openalex.org/C21556879 |
| concepts[17].level | 3 |
| concepts[17].score | 0.3250952363014221 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43219517 |
| concepts[17].display_name | Moore–Penrose pseudoinverse |
| concepts[18].id | https://openalex.org/C122342681 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3239003121852875 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q330828 |
| concepts[18].display_name | Skewness |
| concepts[19].id | https://openalex.org/C115311070 |
| concepts[19].level | 3 |
| concepts[19].score | 0.31444433331489563 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5347255 |
| concepts[19].display_name | Effective dimension |
| concepts[20].id | https://openalex.org/C77553402 |
| concepts[20].level | 2 |
| concepts[20].score | 0.30693814158439636 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[20].display_name | Upper and lower bounds |
| concepts[21].id | https://openalex.org/C145242015 |
| concepts[21].level | 2 |
| concepts[21].score | 0.30239632725715637 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q774123 |
| concepts[21].display_name | Approximation theory |
| concepts[22].id | https://openalex.org/C160920958 |
| concepts[22].level | 2 |
| concepts[22].score | 0.3006459176540375 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[22].display_name | Synthetic data |
| concepts[23].id | https://openalex.org/C92207270 |
| concepts[23].level | 3 |
| concepts[23].score | 0.29307660460472107 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q939253 |
| concepts[23].display_name | Matrix norm |
| concepts[24].id | https://openalex.org/C56372850 |
| concepts[24].level | 3 |
| concepts[24].score | 0.28857672214508057 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[24].display_name | Sparse matrix |
| concepts[25].id | https://openalex.org/C96442724 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2845263183116913 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q242188 |
| concepts[25].display_name | Invertible matrix |
| concepts[26].id | https://openalex.org/C177918212 |
| concepts[26].level | 2 |
| concepts[26].score | 0.27316370606422424 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q803623 |
| concepts[26].display_name | Perturbation (astronomy) |
| concepts[27].id | https://openalex.org/C2781170535 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2688392400741577 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q30587856 |
| concepts[27].display_name | Noisy data |
| concepts[28].id | https://openalex.org/C114614502 |
| concepts[28].level | 1 |
| concepts[28].score | 0.26215222477912903 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[28].display_name | Combinatorics |
| concepts[29].id | https://openalex.org/C160824197 |
| concepts[29].level | 3 |
| concepts[29].score | 0.25814729928970337 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q2071054 |
| concepts[29].display_name | Linear approximation |
| concepts[30].id | https://openalex.org/C118615104 |
| concepts[30].level | 1 |
| concepts[30].score | 0.25744131207466125 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[30].display_name | Discrete mathematics |
| keywords[0].id | https://openalex.org/keywords/low-rank-approximation |
| keywords[0].score | 0.7257249355316162 |
| keywords[0].display_name | Low-rank approximation |
| keywords[1].id | https://openalex.org/keywords/singular-value-decomposition |
| keywords[1].score | 0.5979479551315308 |
| keywords[1].display_name | Singular value decomposition |
| keywords[2].id | https://openalex.org/keywords/dimension |
| keywords[2].score | 0.5344828963279724 |
| keywords[2].display_name | Dimension (graph theory) |
| keywords[3].id | https://openalex.org/keywords/computation |
| keywords[3].score | 0.5101740956306458 |
| keywords[3].display_name | Computation |
| keywords[4].id | https://openalex.org/keywords/singular-value |
| keywords[4].score | 0.5088732242584229 |
| keywords[4].display_name | Singular value |
| keywords[5].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[5].score | 0.5049692392349243 |
| keywords[5].display_name | Curse of dimensionality |
| keywords[6].id | https://openalex.org/keywords/matrix |
| keywords[6].score | 0.46153220534324646 |
| keywords[6].display_name | Matrix (chemical analysis) |
| keywords[7].id | https://openalex.org/keywords/rank |
| keywords[7].score | 0.4562743902206421 |
| keywords[7].display_name | Rank (graph theory) |
| keywords[8].id | https://openalex.org/keywords/matrix-decomposition |
| keywords[8].score | 0.44831582903862 |
| keywords[8].display_name | Matrix decomposition |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.08875 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.08875 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A2108560256 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tran Phuc |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tran, Phuc |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2583351425 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vu, Van |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Vu, Van |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.08875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-14T00:00:00 |
| display_name | New perturbation bounds for low rank approximation of matrices via contour analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-19T23:35:23.961156 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.08875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.08875 |
| primary_location.id | doi:10.48550/arxiv.2511.08875 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.08875 |
| publication_date | 2025-11-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.$ | 21, 203 |
| abstract_inverted_index.+ | 161 |
| abstract_inverted_index.- | 207, 227 |
| abstract_inverted_index.= | 15, 159 |
| abstract_inverted_index.A | 158, 160 |
| abstract_inverted_index.a | 42, 83, 104, 112, 117, 215 |
| abstract_inverted_index.p | 46 |
| abstract_inverted_index.$1 | 44 |
| abstract_inverted_index.$A | 14 |
| abstract_inverted_index.$m | 4 |
| abstract_inverted_index.:= | 50 |
| abstract_inverted_index.In | 63, 144, 210 |
| abstract_inverted_index.We | 149, 230 |
| abstract_inverted_index.\| | 204 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 127, 173 |
| abstract_inverted_index.be | 2, 70 |
| abstract_inverted_index.in | 86, 175, 260, 269 |
| abstract_inverted_index.is | 55, 147, 179, 195, 274 |
| abstract_inverted_index.it | 90, 126, 194 |
| abstract_inverted_index.n$ | 6 |
| abstract_inverted_index.of | 61, 96, 135, 187, 247, 275 |
| abstract_inverted_index.on | 219 |
| abstract_inverted_index.or | 266 |
| abstract_inverted_index.to | 69, 73, 154, 199, 222, 252, 257 |
| abstract_inverted_index.we | 213 |
| abstract_inverted_index.$A$ | 1 |
| abstract_inverted_index.$E$ | 164, 242 |
| abstract_inverted_index.$\| | 224 |
| abstract_inverted_index.$p$ | 59, 68, 185 |
| abstract_inverted_index.$r$ | 10 |
| abstract_inverted_index.A$, | 189 |
| abstract_inverted_index.A_p | 206, 208, 226, 228 |
| abstract_inverted_index.E$, | 162 |
| abstract_inverted_index.For | 41, 103 |
| abstract_inverted_index.Let | 0 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.\le | 45, 47 |
| abstract_inverted_index.and | 11, 30, 37, 124, 140, 197, 243, 249, 278 |
| abstract_inverted_index.are | 24, 33 |
| abstract_inverted_index.can | 91 |
| abstract_inverted_index.for | 116, 129 |
| abstract_inverted_index.has | 279 |
| abstract_inverted_index.its | 25 |
| abstract_inverted_index.new | 232 |
| abstract_inverted_index.one | 65, 109 |
| abstract_inverted_index.r$, | 48 |
| abstract_inverted_index.the | 34, 56, 74, 94, 97, 100, 166, 169, 182, 201, 236, 239, 244, 261 |
| abstract_inverted_index.u_i | 19, 53 |
| abstract_inverted_index.$A$, | 108, 248 |
| abstract_inverted_index.$A$. | 62, 102 |
| abstract_inverted_index.$A_p | 49 |
| abstract_inverted_index.$p$, | 121 |
| abstract_inverted_index.This | 272 |
| abstract_inverted_index.\sum | 16 |
| abstract_inverted_index.\|$. | 209, 229 |
| abstract_inverted_index.best | 57, 183 |
| abstract_inverted_index.data | 87, 106, 142, 156 |
| abstract_inverted_index.have | 151 |
| abstract_inverted_index.left | 36 |
| abstract_inverted_index.many | 176, 270, 280 |
| abstract_inverted_index.only | 153 |
| abstract_inverted_index.rank | 9, 58, 184 |
| abstract_inverted_index.role | 85 |
| abstract_inverted_index.than | 191 |
| abstract_inverted_index.that | 234 |
| abstract_inverted_index.this | 211 |
| abstract_inverted_index.used | 76, 172 |
| abstract_inverted_index.uses | 125 |
| abstract_inverted_index.v_i$ | 32 |
| abstract_inverted_index.with | 8 |
| abstract_inverted_index.σ_i | 18, 52 |
| abstract_inverted_index.$A_p$ | 115, 136 |
| abstract_inverted_index.$u_i, | 31 |
| abstract_inverted_index.A_p$, | 181 |
| abstract_inverted_index.bound | 223 |
| abstract_inverted_index.data, | 99 |
| abstract_inverted_index.error | 202 |
| abstract_inverted_index.input | 128, 174 |
| abstract_inverted_index.large | 105 |
| abstract_inverted_index.noise | 146, 240 |
| abstract_inverted_index.noisy | 155 |
| abstract_inverted_index.novel | 216 |
| abstract_inverted_index.often | 66, 150 |
| abstract_inverted_index.plays | 82 |
| abstract_inverted_index.right | 38 |
| abstract_inverted_index.small | 120 |
| abstract_inverted_index.tasks | 178 |
| abstract_inverted_index.these | 251 |
| abstract_inverted_index.where | 22, 163 |
| abstract_inverted_index.$A_p$, | 123 |
| abstract_inverted_index.$A_p$. | 192 |
| abstract_inverted_index.$σ_i$ | 23 |
| abstract_inverted_index.(based | 218 |
| abstract_inverted_index.(using | 263 |
| abstract_inverted_index.\tilde | 205, 225 |
| abstract_inverted_index.\times | 5 |
| abstract_inverted_index.access | 152 |
| abstract_inverted_index.chosen | 119 |
| abstract_inverted_index.faster | 138 |
| abstract_inverted_index.matrix | 7, 101, 107, 241 |
| abstract_inverted_index.method | 217, 273 |
| abstract_inverted_index.noise. | 167 |
| abstract_inverted_index.obtain | 253 |
| abstract_inverted_index.paper, | 212 |
| abstract_inverted_index.phrase | 77 |
| abstract_inverted_index.rather | 190 |
| abstract_inverted_index.reduce | 93 |
| abstract_inverted_index.small, | 71 |
| abstract_inverted_index.stores | 122 |
| abstract_inverted_index.$\tilde | 157, 180, 188 |
| abstract_inverted_index.because | 89 |
| abstract_inverted_index.between | 238 |
| abstract_inverted_index.central | 84 |
| abstract_inverted_index.chooses | 67 |
| abstract_inverted_index.contour | 220 |
| abstract_inverted_index.develop | 214 |
| abstract_inverted_index.enables | 137 |
| abstract_inverted_index.exploit | 250 |
| abstract_inverted_index.further | 130, 281 |
| abstract_inverted_index.leading | 72 |
| abstract_inverted_index.measure | 235 |
| abstract_inverted_index.natural | 196 |
| abstract_inverted_index.notable | 254 |
| abstract_inverted_index.ordered | 28 |
| abstract_inverted_index.reduced | 133 |
| abstract_inverted_index.science | 88 |
| abstract_inverted_index.theorem | 265 |
| abstract_inverted_index.values, | 27 |
| abstract_inverted_index.vectors | 246 |
| abstract_inverted_index.Low-rank | 80 |
| abstract_inverted_index._{i=1}^r | 17 |
| abstract_inverted_index.commonly | 75 |
| abstract_inverted_index.compared | 256 |
| abstract_inverted_index.computes | 111 |
| abstract_inverted_index.estimate | 200 |
| abstract_inverted_index.interest | 277 |
| abstract_inverted_index.low-rank | 170 |
| abstract_inverted_index.original | 98 |
| abstract_inverted_index.rank-$p$ | 113 |
| abstract_inverted_index.singular | 26, 39, 245 |
| abstract_inverted_index.skewness | 237 |
| abstract_inverted_index.spectral | 12 |
| abstract_inverted_index.suitably | 118 |
| abstract_inverted_index.vectors. | 40 |
| abstract_inverted_index."low-rank | 78 |
| abstract_inverted_index.analysis) | 221 |
| abstract_inverted_index.classical | 258 |
| abstract_inverted_index.dimension | 134 |
| abstract_inverted_index.important | 198 |
| abstract_inverted_index.introduce | 231 |
| abstract_inverted_index.parameter | 43 |
| abstract_inverted_index.practice, | 64, 145 |
| abstract_inverted_index.settings. | 271 |
| abstract_inverted_index.theorem), | 268 |
| abstract_inverted_index.typically | 110 |
| abstract_inverted_index.v_i^\top$ | 54 |
| abstract_inverted_index.v_i^\top, | 20 |
| abstract_inverted_index.Therefore, | 193 |
| abstract_inverted_index.approaches | 259 |
| abstract_inverted_index.downstream | 177 |
| abstract_inverted_index.literature | 262 |
| abstract_inverted_index.parameters | 233 |
| abstract_inverted_index.represents | 165 |
| abstract_inverted_index.Davis-Kahan | 267 |
| abstract_inverted_index.independent | 276 |
| abstract_inverted_index.inevitable. | 148 |
| abstract_inverted_index.significant | 141 |
| abstract_inverted_index.\sum_{i=1}^p | 51 |
| abstract_inverted_index.compression. | 143 |
| abstract_inverted_index.computations | 139 |
| abstract_inverted_index.Consequently, | 168 |
| abstract_inverted_index.applications. | 282 |
| abstract_inverted_index.approximation | 60, 81, 114, 171, 186 |
| abstract_inverted_index.computations. | 131 |
| abstract_inverted_index.corresponding | 35 |
| abstract_inverted_index.decomposition | 13 |
| abstract_inverted_index.decreasingly, | 29 |
| abstract_inverted_index.improvements, | 255 |
| abstract_inverted_index.substantially | 92 |
| abstract_inverted_index.dimensionality | 95 |
| abstract_inverted_index.approximation". | 79 |
| abstract_inverted_index.Eckart-Young-Mirsky | 264 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |