Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-18753-w
This work introduces a high-performance graphene-silver hybrid metasurface biosensor for the fast and precise detection of COVID-19. Through parametric optimization with COMSOL Multiphysics, the sensor achieves a sensitivity of 400 GHz/RIU, a figure of merit (FOM) of 5.000 RIU⁻¹, and a Q factor of 12.7 within the refractive index range of 1.334-1.355 RIU. A machine learning framework enhances predictive reliability across different refractive indices, as reflected by a coefficient of determination (R²) of 0.90. The fabrication strategy-combining CVD graphene growth, electron beam lithography, and silver deposition-ensures scalability and practical realization. The novelty of this study lies in the synergistic integration of a graphene-silver metasurface platform with machine learning-based predictive modeling, enabling rapid, label-free, and highly accurate COVID-19 detection. Unlike conventional RT-PCR and antigen-based tests, which suffer from delays, high costs, or reduced sensitivity in asymptomatic cases, the proposed sensor achieves superior balance between sensitivity, figure of merit, and predictive accuracy, thereby surpassing state-of-the-art optical and terahertz biosensors. This positions the device as a novel, portable, and cost-effective diagnostic tool for next-generation pandemic preparedness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-18753-w
- https://www.nature.com/articles/s41598-025-18753-w.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 69
- OpenAlex ID
- https://openalex.org/W4414606956
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414606956Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-18753-wDigital Object Identifier
- Title
-
Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
N. A. Natraj, Azath Mubarakali, Manjunathan Alagarsamy, Mohammad Yahya H. Al-Shamri, Raman DhivyaList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-18753-wPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-18753-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-18753-w.pdfDirect OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414606956 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-18753-w |
| ids.doi | https://doi.org/10.1038/s41598-025-18753-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41023062 |
| ids.openalex | https://openalex.org/W4414606956 |
| fwci | 1.99286181 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D015374 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Biosensing Techniques |
| mesh[1].qualifier_ui | Q000295 |
| mesh[1].descriptor_ui | D015374 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | instrumentation |
| mesh[1].descriptor_name | Biosensing Techniques |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D000086382 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | COVID-19 |
| mesh[4].qualifier_ui | Q000821 |
| mesh[4].descriptor_ui | D000086382 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | virology |
| mesh[4].descriptor_name | COVID-19 |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | Q000737 |
| mesh[6].descriptor_ui | D006108 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | chemistry |
| mesh[6].descriptor_name | Graphite |
| mesh[7].qualifier_ui | Q000302 |
| mesh[7].descriptor_ui | D000086402 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | isolation & purification |
| mesh[7].descriptor_name | SARS-CoV-2 |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D012031 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Refractometry |
| mesh[9].qualifier_ui | Q000737 |
| mesh[9].descriptor_ui | D012834 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | chemistry |
| mesh[9].descriptor_name | Silver |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D015374 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Biosensing Techniques |
| mesh[11].qualifier_ui | Q000295 |
| mesh[11].descriptor_ui | D015374 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | instrumentation |
| mesh[11].descriptor_name | Biosensing Techniques |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000069550 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Machine Learning |
| mesh[13].qualifier_ui | Q000175 |
| mesh[13].descriptor_ui | D000086382 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | diagnosis |
| mesh[13].descriptor_name | COVID-19 |
| mesh[14].qualifier_ui | Q000821 |
| mesh[14].descriptor_ui | D000086382 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | virology |
| mesh[14].descriptor_name | COVID-19 |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | Q000737 |
| mesh[16].descriptor_ui | D006108 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | chemistry |
| mesh[16].descriptor_name | Graphite |
| mesh[17].qualifier_ui | Q000302 |
| mesh[17].descriptor_ui | D000086402 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | isolation & purification |
| mesh[17].descriptor_name | SARS-CoV-2 |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D012031 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Refractometry |
| mesh[19].qualifier_ui | Q000737 |
| mesh[19].descriptor_ui | D012834 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | chemistry |
| mesh[19].descriptor_name | Silver |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D015374 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Biosensing Techniques |
| mesh[21].qualifier_ui | Q000295 |
| mesh[21].descriptor_ui | D015374 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | instrumentation |
| mesh[21].descriptor_name | Biosensing Techniques |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000069550 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Machine Learning |
| mesh[23].qualifier_ui | Q000175 |
| mesh[23].descriptor_ui | D000086382 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | diagnosis |
| mesh[23].descriptor_name | COVID-19 |
| mesh[24].qualifier_ui | Q000821 |
| mesh[24].descriptor_ui | D000086382 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | virology |
| mesh[24].descriptor_name | COVID-19 |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | Q000737 |
| mesh[26].descriptor_ui | D006108 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | chemistry |
| mesh[26].descriptor_name | Graphite |
| mesh[27].qualifier_ui | Q000302 |
| mesh[27].descriptor_ui | D000086402 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | isolation & purification |
| mesh[27].descriptor_name | SARS-CoV-2 |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D012031 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Refractometry |
| mesh[29].qualifier_ui | Q000737 |
| mesh[29].descriptor_ui | D012834 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | chemistry |
| mesh[29].descriptor_name | Silver |
| type | article |
| title | Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 33406 |
| biblio.first_page | 33406 |
| topics[0].id | https://openalex.org/T13052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9889000058174133 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Molecular Communication and Nanonetworks |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11754 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9754999876022339 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2725 |
| topics[2].subfield.display_name | Infectious Diseases |
| topics[2].display_name | SARS-CoV-2 detection and testing |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-18753-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-18753-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-18753-w |
| locations[1].id | pmid:41023062 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41023062 |
| locations[2].id | pmh:oai:doaj.org/article:74826eb7498e4ee5b8ebd3a07173cde4 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-20 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/74826eb7498e4ee5b8ebd3a07173cde4 |
| locations[3].id | pmh:oai:europepmc.org:11291842 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12480986 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5015029608 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8726-5284 |
| authorships[0].author.display_name | N. A. Natraj |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I244572783 |
| authorships[0].affiliations[0].raw_affiliation_string | Symbiosis Institute of Digital and Telecom Management (SIDTM), Symbiosis International (Deemed University), Pune, India |
| authorships[0].institutions[0].id | https://openalex.org/I244572783 |
| authorships[0].institutions[0].ror | https://ror.org/005r2ww51 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I244572783 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Symbiosis International University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | N. A. Natraj |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Symbiosis Institute of Digital and Telecom Management (SIDTM), Symbiosis International (Deemed University), Pune, India |
| authorships[1].author.id | https://openalex.org/A5004296457 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9939-1790 |
| authorships[1].author.display_name | Azath Mubarakali |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I82952536 |
| authorships[1].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Khalid University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Azath Mubarakali |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5047706793 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Manjunathan Alagarsamy |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, K.Ramakrishnan College of Technology, Trichy, 621112, Tamilnadu, India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Manjunathan Alagarsamy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronics and Communication Engineering, K.Ramakrishnan College of Technology, Trichy, 621112, Tamilnadu, India |
| authorships[3].author.id | https://openalex.org/A5016114733 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7174-6083 |
| authorships[3].author.display_name | Mohammad Yahya H. Al-Shamri |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Engineering Department, College of Computer Science, King Khalid University, Abha, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I82952536 |
| authorships[3].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Khalid University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohammad Yahya H. Al-Shamri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Engineering Department, College of Computer Science, King Khalid University, Abha, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5000370969 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Raman Dhivya |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Technology, M.Kumarasamy College of Engineering, Karur, 639113, Tamilnadu, India |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | R. Dhivya |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Technology, M.Kumarasamy College of Engineering, Karur, 639113, Tamilnadu, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-18753-w.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9889000058174133 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Molecular Communication and Nanonetworks |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-18753-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-18753-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-18753-w |
| primary_location.id | doi:10.1038/s41598-025-18753-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-18753-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-18753-w |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3013355453, https://openalex.org/W3037185429, https://openalex.org/W3120310961, https://openalex.org/W3134928714, https://openalex.org/W4293542990, https://openalex.org/W4220825616, https://openalex.org/W4210332283, https://openalex.org/W4391613673, https://openalex.org/W4205914002, https://openalex.org/W3204807732, https://openalex.org/W4389328140, https://openalex.org/W4281721384, https://openalex.org/W4362733348, https://openalex.org/W2769618154, https://openalex.org/W3212536155, https://openalex.org/W4221120921, https://openalex.org/W4386163392, https://openalex.org/W3162877219, https://openalex.org/W3123764486, https://openalex.org/W3121034892, https://openalex.org/W3124596243, https://openalex.org/W4308456503, https://openalex.org/W4206055770, https://openalex.org/W4410584436, https://openalex.org/W4407264408, https://openalex.org/W4385308366, https://openalex.org/W4403208478, https://openalex.org/W4394784033, https://openalex.org/W4403560601, https://openalex.org/W4403790816, https://openalex.org/W4406016227, https://openalex.org/W4411866600, https://openalex.org/W4411874648, https://openalex.org/W4410831574, https://openalex.org/W4401846457, https://openalex.org/W4408030780, https://openalex.org/W4412160401, https://openalex.org/W4410917121, https://openalex.org/W4404906128, https://openalex.org/W4410956379, https://openalex.org/W4410469314, https://openalex.org/W4411310773, https://openalex.org/W3081419298, https://openalex.org/W2608290875, https://openalex.org/W2470839021, https://openalex.org/W4226504943, https://openalex.org/W4321205968, https://openalex.org/W4363676216, https://openalex.org/W4400872493, https://openalex.org/W4411033849, https://openalex.org/W4411007617, https://openalex.org/W4409424539, https://openalex.org/W4386223187, https://openalex.org/W4412433216, https://openalex.org/W4410842876, https://openalex.org/W4410905967, https://openalex.org/W4412763182, https://openalex.org/W4410465119, https://openalex.org/W4411744304, https://openalex.org/W4410221502, https://openalex.org/W4411961410, https://openalex.org/W4410094076, https://openalex.org/W2055224065, https://openalex.org/W2078822784, https://openalex.org/W2072212400, https://openalex.org/W4386697137, https://openalex.org/W4384824012, https://openalex.org/W4385836660, https://openalex.org/W4386707722 |
| referenced_works_count | 69 |
| abstract_inverted_index.A | 53 |
| abstract_inverted_index.Q | 41 |
| abstract_inverted_index.a | 3, 26, 31, 40, 67, 101, 162 |
| abstract_inverted_index.as | 64, 161 |
| abstract_inverted_index.by | 66 |
| abstract_inverted_index.in | 96, 133 |
| abstract_inverted_index.of | 15, 28, 33, 36, 43, 50, 69, 72, 92, 100, 145 |
| abstract_inverted_index.or | 130 |
| abstract_inverted_index.400 | 29 |
| abstract_inverted_index.CVD | 77 |
| abstract_inverted_index.The | 74, 90 |
| abstract_inverted_index.and | 12, 39, 83, 87, 113, 121, 147, 154, 165 |
| abstract_inverted_index.for | 9, 169 |
| abstract_inverted_index.the | 10, 23, 46, 97, 136, 159 |
| abstract_inverted_index.12.7 | 44 |
| abstract_inverted_index.RIU. | 52 |
| abstract_inverted_index.This | 0, 157 |
| abstract_inverted_index.beam | 81 |
| abstract_inverted_index.fast | 11 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.high | 128 |
| abstract_inverted_index.lies | 95 |
| abstract_inverted_index.this | 93 |
| abstract_inverted_index.tool | 168 |
| abstract_inverted_index.with | 20, 105 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.(FOM) | 35 |
| abstract_inverted_index.(R²) | 71 |
| abstract_inverted_index.0.90. | 73 |
| abstract_inverted_index.5.000 | 37 |
| abstract_inverted_index.index | 48 |
| abstract_inverted_index.merit | 34 |
| abstract_inverted_index.range | 49 |
| abstract_inverted_index.study | 94 |
| abstract_inverted_index.which | 124 |
| abstract_inverted_index.COMSOL | 21 |
| abstract_inverted_index.RT-PCR | 120 |
| abstract_inverted_index.Unlike | 118 |
| abstract_inverted_index.across | 60 |
| abstract_inverted_index.cases, | 135 |
| abstract_inverted_index.costs, | 129 |
| abstract_inverted_index.device | 160 |
| abstract_inverted_index.factor | 42 |
| abstract_inverted_index.figure | 32, 144 |
| abstract_inverted_index.highly | 114 |
| abstract_inverted_index.hybrid | 6 |
| abstract_inverted_index.merit, | 146 |
| abstract_inverted_index.novel, | 163 |
| abstract_inverted_index.rapid, | 111 |
| abstract_inverted_index.sensor | 24, 138 |
| abstract_inverted_index.silver | 84 |
| abstract_inverted_index.suffer | 125 |
| abstract_inverted_index.tests, | 123 |
| abstract_inverted_index.within | 45 |
| abstract_inverted_index.Through | 17 |
| abstract_inverted_index.balance | 141 |
| abstract_inverted_index.between | 142 |
| abstract_inverted_index.delays, | 127 |
| abstract_inverted_index.growth, | 79 |
| abstract_inverted_index.machine | 54, 106 |
| abstract_inverted_index.novelty | 91 |
| abstract_inverted_index.optical | 153 |
| abstract_inverted_index.precise | 13 |
| abstract_inverted_index.reduced | 131 |
| abstract_inverted_index.thereby | 150 |
| abstract_inverted_index.COVID-19 | 116 |
| abstract_inverted_index.GHz/RIU, | 30 |
| abstract_inverted_index.accurate | 115 |
| abstract_inverted_index.achieves | 25, 139 |
| abstract_inverted_index.electron | 80 |
| abstract_inverted_index.enabling | 110 |
| abstract_inverted_index.enhances | 57 |
| abstract_inverted_index.graphene | 78 |
| abstract_inverted_index.indices, | 63 |
| abstract_inverted_index.learning | 55 |
| abstract_inverted_index.pandemic | 171 |
| abstract_inverted_index.platform | 104 |
| abstract_inverted_index.proposed | 137 |
| abstract_inverted_index.superior | 140 |
| abstract_inverted_index.COVID-19. | 16 |
| abstract_inverted_index.RIU⁻¹, | 38 |
| abstract_inverted_index.accuracy, | 149 |
| abstract_inverted_index.biosensor | 8 |
| abstract_inverted_index.detection | 14 |
| abstract_inverted_index.different | 61 |
| abstract_inverted_index.framework | 56 |
| abstract_inverted_index.modeling, | 109 |
| abstract_inverted_index.portable, | 164 |
| abstract_inverted_index.positions | 158 |
| abstract_inverted_index.practical | 88 |
| abstract_inverted_index.reflected | 65 |
| abstract_inverted_index.terahertz | 155 |
| abstract_inverted_index.detection. | 117 |
| abstract_inverted_index.diagnostic | 167 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.parametric | 18 |
| abstract_inverted_index.predictive | 58, 108, 148 |
| abstract_inverted_index.refractive | 47, 62 |
| abstract_inverted_index.surpassing | 151 |
| abstract_inverted_index.1.334-1.355 | 51 |
| abstract_inverted_index.biosensors. | 156 |
| abstract_inverted_index.coefficient | 68 |
| abstract_inverted_index.fabrication | 75 |
| abstract_inverted_index.integration | 99 |
| abstract_inverted_index.label-free, | 112 |
| abstract_inverted_index.metasurface | 7, 103 |
| abstract_inverted_index.reliability | 59 |
| abstract_inverted_index.scalability | 86 |
| abstract_inverted_index.sensitivity | 27, 132 |
| abstract_inverted_index.synergistic | 98 |
| abstract_inverted_index.asymptomatic | 134 |
| abstract_inverted_index.conventional | 119 |
| abstract_inverted_index.lithography, | 82 |
| abstract_inverted_index.optimization | 19 |
| abstract_inverted_index.realization. | 89 |
| abstract_inverted_index.sensitivity, | 143 |
| abstract_inverted_index.Multiphysics, | 22 |
| abstract_inverted_index.antigen-based | 122 |
| abstract_inverted_index.determination | 70 |
| abstract_inverted_index.preparedness. | 172 |
| abstract_inverted_index.cost-effective | 166 |
| abstract_inverted_index.learning-based | 107 |
| abstract_inverted_index.graphene-silver | 5, 102 |
| abstract_inverted_index.next-generation | 170 |
| abstract_inverted_index.high-performance | 4 |
| abstract_inverted_index.state-of-the-art | 152 |
| abstract_inverted_index.deposition-ensures | 85 |
| abstract_inverted_index.strategy-combining | 76 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5015029608 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I244572783 |
| citation_normalized_percentile.value | 0.82774403 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |