Next-generation digital chest tomosynthesis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.25259/jcis_4_2024
The objective of this study was to demonstrate the performance characteristics and potential utility of a novel tomosynthesis device as applied to imaging the chest, specifically relating to lung nodules. The imaging characteristics and quality of a novel digital tomosynthesis prototype system was assessed by scanning, a healthy volunteer, and an andromorphic lung phantom with different configurations of simulated pulmonary nodules. The adequacy of nodule detection on the phantoms was rated by chest radiologists using a standardized scale. Results from using this tomosynthesis device demonstrate in plane resolution of 16lp/cm, with estimated effective radiation doses of 90% less than low dose CT. Nodule detection was adequate across various anatomic locations on a phantom. These proof-of-concept tests showed this novel tomosynthesis device can detect lung nodules with low radiation dose to the patient. This technique has potential as an alternative to low dose chest CT for lung nodule screening and tracking.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.25259/jcis_4_2024
- OA Status
- green
- Cited By
- 3
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400050019
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400050019Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.25259/jcis_4_2024Digital Object Identifier
- Title
-
Next-generation digital chest tomosynthesisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-26Full publication date if available
- Authors
-
Christopher Gange, Jamie A. Ku, Babina Gosangi, Jian-Qiang Liu, Manat MaolinbayList of authors in order
- Landing page
-
https://doi.org/10.25259/jcis_4_2024Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11225395Direct OA link when available
- Concepts
-
Tomosynthesis, Medicine, Imaging phantom, Nodule (geology), Solitary pulmonary nodule, Radiology, Nuclear medicine, Lung, Computed tomography, Mammography, Internal medicine, Breast cancer, Biology, Cancer, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400050019 |
|---|---|
| doi | https://doi.org/10.25259/jcis_4_2024 |
| ids.doi | https://doi.org/10.25259/jcis_4_2024 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38975057 |
| ids.openalex | https://openalex.org/W4400050019 |
| fwci | 2.58786942 |
| type | article |
| title | Next-generation digital chest tomosynthesis |
| biblio.issue | |
| biblio.volume | 14 |
| biblio.last_page | 22 |
| biblio.first_page | 22 |
| topics[0].id | https://openalex.org/T11361 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Digital Radiography and Breast Imaging |
| topics[1].id | https://openalex.org/T10202 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Lung Cancer Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T10844 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9994000196456909 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiation Dose and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C147454874 |
| concepts[0].level | 5 |
| concepts[0].score | 0.9870142936706543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7820316 |
| concepts[0].display_name | Tomosynthesis |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7504575252532959 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C104293457 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6955757141113281 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[2].display_name | Imaging phantom |
| concepts[3].id | https://openalex.org/C2776731575 |
| concepts[3].level | 2 |
| concepts[3].score | 0.539974570274353 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2916245 |
| concepts[3].display_name | Nodule (geology) |
| concepts[4].id | https://openalex.org/C2780244788 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5379176139831543 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1877474 |
| concepts[4].display_name | Solitary pulmonary nodule |
| concepts[5].id | https://openalex.org/C126838900 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5296276211738586 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[5].display_name | Radiology |
| concepts[6].id | https://openalex.org/C2989005 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46397313475608826 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[6].display_name | Nuclear medicine |
| concepts[7].id | https://openalex.org/C2777714996 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45070314407348633 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[7].display_name | Lung |
| concepts[8].id | https://openalex.org/C544519230 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2416352927684784 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[8].display_name | Computed tomography |
| concepts[9].id | https://openalex.org/C2780472235 |
| concepts[9].level | 4 |
| concepts[9].score | 0.11276131868362427 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[9].display_name | Mammography |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05800941586494446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C530470458 |
| concepts[11].level | 3 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[11].display_name | Breast cancer |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C121608353 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[13].display_name | Cancer |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/tomosynthesis |
| keywords[0].score | 0.9870142936706543 |
| keywords[0].display_name | Tomosynthesis |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.7504575252532959 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/imaging-phantom |
| keywords[2].score | 0.6955757141113281 |
| keywords[2].display_name | Imaging phantom |
| keywords[3].id | https://openalex.org/keywords/nodule |
| keywords[3].score | 0.539974570274353 |
| keywords[3].display_name | Nodule (geology) |
| keywords[4].id | https://openalex.org/keywords/solitary-pulmonary-nodule |
| keywords[4].score | 0.5379176139831543 |
| keywords[4].display_name | Solitary pulmonary nodule |
| keywords[5].id | https://openalex.org/keywords/radiology |
| keywords[5].score | 0.5296276211738586 |
| keywords[5].display_name | Radiology |
| keywords[6].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[6].score | 0.46397313475608826 |
| keywords[6].display_name | Nuclear medicine |
| keywords[7].id | https://openalex.org/keywords/lung |
| keywords[7].score | 0.45070314407348633 |
| keywords[7].display_name | Lung |
| keywords[8].id | https://openalex.org/keywords/computed-tomography |
| keywords[8].score | 0.2416352927684784 |
| keywords[8].display_name | Computed tomography |
| keywords[9].id | https://openalex.org/keywords/mammography |
| keywords[9].score | 0.11276131868362427 |
| keywords[9].display_name | Mammography |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.05800941586494446 |
| keywords[10].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.25259/jcis_4_2024 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S2764533258 |
| locations[0].source.issn | 2156-5597, 2156-7514, 2156-7522 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2156-5597 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Clinical Imaging Science |
| locations[0].source.host_organization | https://openalex.org/P4310320448 |
| locations[0].source.host_organization_name | Medknow |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320448 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Clinical Imaging Science |
| locations[0].landing_page_url | https://doi.org/10.25259/jcis_4_2024 |
| locations[1].id | pmid:38975057 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of clinical imaging science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38975057 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11225395 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Clin Imaging Sci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11225395 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5048502702 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1224-4665 |
| authorships[0].author.display_name | Christopher Gange |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Christopher Gange |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States |
| authorships[1].author.id | https://openalex.org/A5109631569 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jamie A. Ku |
| authorships[1].affiliations[0].raw_affiliation_string | Product Development, Aixscan Inc., Sunnyvale, California, United States, |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jamie Ku |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Product Development, Aixscan Inc., Sunnyvale, California, United States, |
| authorships[2].author.id | https://openalex.org/A5051920844 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4855-4232 |
| authorships[2].author.display_name | Babina Gosangi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Babina Gosangi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States |
| authorships[3].author.id | https://openalex.org/A5100657893 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0553-7937 |
| authorships[3].author.display_name | Jian-Qiang Liu |
| authorships[3].affiliations[0].raw_affiliation_string | Product Development, Aixscan Inc., Sunnyvale, California, United States, |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianqiang Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Product Development, Aixscan Inc., Sunnyvale, California, United States, |
| authorships[4].author.id | https://openalex.org/A5099524135 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Manat Maolinbay |
| authorships[4].affiliations[0].raw_affiliation_string | Product Development, Aixscan Inc., Sunnyvale, California, United States, |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Manat Maolinbay |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Product Development, Aixscan Inc., Sunnyvale, California, United States, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11225395 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Next-generation digital chest tomosynthesis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11361 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Digital Radiography and Breast Imaging |
| related_works | https://openalex.org/W2809317535, https://openalex.org/W2418860172, https://openalex.org/W2965938661, https://openalex.org/W2029818840, https://openalex.org/W2428333999, https://openalex.org/W3031546425, https://openalex.org/W2403649307, https://openalex.org/W2062166997, https://openalex.org/W2386520401, https://openalex.org/W2484894963 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11225395 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Clin Imaging Sci |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11225395 |
| primary_location.id | doi:10.25259/jcis_4_2024 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S2764533258 |
| primary_location.source.issn | 2156-5597, 2156-7514, 2156-7522 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2156-5597 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Clinical Imaging Science |
| primary_location.source.host_organization | https://openalex.org/P4310320448 |
| primary_location.source.host_organization_name | Medknow |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320448 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Clinical Imaging Science |
| primary_location.landing_page_url | https://doi.org/10.25259/jcis_4_2024 |
| publication_date | 2024-06-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W130099911, https://openalex.org/W4241812694, https://openalex.org/W2900099530, https://openalex.org/W1984634678, https://openalex.org/W2023616320, https://openalex.org/W2140721130, https://openalex.org/W1975026334, https://openalex.org/W2490961947, https://openalex.org/W2535534904, https://openalex.org/W1450549269, https://openalex.org/W2141298660, https://openalex.org/W2134302089, https://openalex.org/W3133543222, https://openalex.org/W2608572491, https://openalex.org/W2010842979, https://openalex.org/W2166170442, https://openalex.org/W2158380504, https://openalex.org/W6609696298, https://openalex.org/W2332743902, https://openalex.org/W2795475144, https://openalex.org/W3015305401, https://openalex.org/W1213336605, https://openalex.org/W2976911530, https://openalex.org/W3110687077, https://openalex.org/W2023055841, https://openalex.org/W2127060405, https://openalex.org/W2775278721, https://openalex.org/W258436941, https://openalex.org/W4372046765 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 15, 36, 46, 75, 111 |
| abstract_inverted_index.CT | 143 |
| abstract_inverted_index.an | 50, 137 |
| abstract_inverted_index.as | 19, 136 |
| abstract_inverted_index.by | 44, 71 |
| abstract_inverted_index.in | 85 |
| abstract_inverted_index.of | 2, 14, 35, 57, 63, 88, 95 |
| abstract_inverted_index.on | 66, 110 |
| abstract_inverted_index.to | 6, 21, 27, 129, 139 |
| abstract_inverted_index.90% | 96 |
| abstract_inverted_index.CT. | 101 |
| abstract_inverted_index.The | 0, 30, 61 |
| abstract_inverted_index.and | 11, 33, 49, 148 |
| abstract_inverted_index.can | 121 |
| abstract_inverted_index.for | 144 |
| abstract_inverted_index.has | 134 |
| abstract_inverted_index.low | 99, 126, 140 |
| abstract_inverted_index.the | 8, 23, 67, 130 |
| abstract_inverted_index.was | 5, 42, 69, 104 |
| abstract_inverted_index.This | 132 |
| abstract_inverted_index.dose | 100, 128, 141 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.less | 97 |
| abstract_inverted_index.lung | 28, 52, 123, 145 |
| abstract_inverted_index.than | 98 |
| abstract_inverted_index.this | 3, 81, 117 |
| abstract_inverted_index.with | 54, 90, 125 |
| abstract_inverted_index.These | 113 |
| abstract_inverted_index.chest | 72, 142 |
| abstract_inverted_index.doses | 94 |
| abstract_inverted_index.novel | 16, 37, 118 |
| abstract_inverted_index.plane | 86 |
| abstract_inverted_index.rated | 70 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.tests | 115 |
| abstract_inverted_index.using | 74, 80 |
| abstract_inverted_index.Nodule | 102 |
| abstract_inverted_index.across | 106 |
| abstract_inverted_index.chest, | 24 |
| abstract_inverted_index.detect | 122 |
| abstract_inverted_index.device | 18, 83, 120 |
| abstract_inverted_index.nodule | 64, 146 |
| abstract_inverted_index.scale. | 77 |
| abstract_inverted_index.showed | 116 |
| abstract_inverted_index.system | 41 |
| abstract_inverted_index.Results | 78 |
| abstract_inverted_index.applied | 20 |
| abstract_inverted_index.digital | 38 |
| abstract_inverted_index.healthy | 47 |
| abstract_inverted_index.imaging | 22, 31 |
| abstract_inverted_index.nodules | 124 |
| abstract_inverted_index.phantom | 53 |
| abstract_inverted_index.quality | 34 |
| abstract_inverted_index.utility | 13 |
| abstract_inverted_index.various | 107 |
| abstract_inverted_index.16lp/cm, | 89 |
| abstract_inverted_index.adequacy | 62 |
| abstract_inverted_index.adequate | 105 |
| abstract_inverted_index.anatomic | 108 |
| abstract_inverted_index.assessed | 43 |
| abstract_inverted_index.nodules. | 29, 60 |
| abstract_inverted_index.patient. | 131 |
| abstract_inverted_index.phantom. | 112 |
| abstract_inverted_index.phantoms | 68 |
| abstract_inverted_index.relating | 26 |
| abstract_inverted_index.detection | 65, 103 |
| abstract_inverted_index.different | 55 |
| abstract_inverted_index.effective | 92 |
| abstract_inverted_index.estimated | 91 |
| abstract_inverted_index.locations | 109 |
| abstract_inverted_index.objective | 1 |
| abstract_inverted_index.potential | 12, 135 |
| abstract_inverted_index.prototype | 40 |
| abstract_inverted_index.pulmonary | 59 |
| abstract_inverted_index.radiation | 93, 127 |
| abstract_inverted_index.scanning, | 45 |
| abstract_inverted_index.screening | 147 |
| abstract_inverted_index.simulated | 58 |
| abstract_inverted_index.technique | 133 |
| abstract_inverted_index.tracking. | 149 |
| abstract_inverted_index.resolution | 87 |
| abstract_inverted_index.volunteer, | 48 |
| abstract_inverted_index.alternative | 138 |
| abstract_inverted_index.demonstrate | 7, 84 |
| abstract_inverted_index.performance | 9 |
| abstract_inverted_index.andromorphic | 51 |
| abstract_inverted_index.radiologists | 73 |
| abstract_inverted_index.specifically | 25 |
| abstract_inverted_index.standardized | 76 |
| abstract_inverted_index.tomosynthesis | 17, 39, 82, 119 |
| abstract_inverted_index.configurations | 56 |
| abstract_inverted_index.characteristics | 10, 32 |
| abstract_inverted_index.proof-of-concept | 114 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.84989994 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |