Next Location Recommendation: A Multi-context Features Integration Perspective Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2120726/v1
Next location recommendation aims to mine users’ historical trajectories to predict their potentially preferred locations in the next moment. Although previous studies have explored the idea of incorporating location or social contextual information for recommendation, they still suffer from several major limitations: (1) not fully considering the semantic associations between locations, (2) not considering the heterogeneity in preferences of socially linked users, (3) not fully utilizing contextual information from distinctive sources to further improve the recommendation performance. In this paper, we propose a novel multi-context-based next location recommendation model that incorporates location context, trajectory context, and social context to obtain comprehensive users’ preferences while allowing for interactions between contexts. Specifically, we first develop an efficient method combining both high-order location graphs and location semantic graphs to characterize subtle associations between locations. Then we explore the social contextual information and introduce the location subgraph which considers heterogeneous preferences among friends. Finally, we use the LSTM and geo-dilated LSTM to capture the spatio-temporal associations between users’ trajectories and integrate various contextual information to improve model performance. Extensive experiments on three real datasets show that our model has superior results in the next location recommendation task over other baselines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2120726/v1
- https://www.researchsquare.com/article/rs-2120726/latest.pdf
- OA Status
- green
- Cited By
- 1
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304778072
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304778072Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2120726/v1Digital Object Identifier
- Title
-
Next Location Recommendation: A Multi-context Features Integration PerspectiveWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-12Full publication date if available
- Authors
-
Xuemei Wei, Chunli Liu, Yezheng Liu, Yang Li, Kai ZhangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2120726/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2120726/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2120726/latest.pdfDirect OA link when available
- Concepts
-
Computer science, Context (archaeology), Perspective (graphical), Recommender system, Information retrieval, Trajectory, Data science, Task (project management), Machine learning, Spatial contextual awareness, Data mining, Artificial intelligence, World Wide Web, Geography, Archaeology, Physics, Economics, Astronomy, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304778072 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2120726/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2120726/v1 |
| ids.openalex | https://openalex.org/W4304778072 |
| fwci | 0.24882053 |
| type | preprint |
| title | Next Location Recommendation: A Multi-context Features Integration Perspective |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11980 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Human Mobility and Location-Based Analysis |
| topics[1].id | https://openalex.org/T10757 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3305 |
| topics[1].subfield.display_name | Geography, Planning and Development |
| topics[1].display_name | Geographic Information Systems Studies |
| topics[2].id | https://openalex.org/T11106 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8253995776176453 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6710962057113647 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C12713177 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5865825414657593 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[2].display_name | Perspective (graphical) |
| concepts[3].id | https://openalex.org/C557471498 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5484370589256287 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[3].display_name | Recommender system |
| concepts[4].id | https://openalex.org/C23123220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5167690515518188 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[4].display_name | Information retrieval |
| concepts[5].id | https://openalex.org/C13662910 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4511781930923462 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[5].display_name | Trajectory |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44412657618522644 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C2780451532 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43592873215675354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[7].display_name | Task (project management) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4254247844219208 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C64754055 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4230552911758423 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7574053 |
| concepts[9].display_name | Spatial contextual awareness |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4048844873905182 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3988543152809143 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3353431820869446 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1398358941078186 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C166957645 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[14].display_name | Archaeology |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C1276947 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[17].display_name | Astronomy |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8253995776176453 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.6710962057113647 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/perspective |
| keywords[2].score | 0.5865825414657593 |
| keywords[2].display_name | Perspective (graphical) |
| keywords[3].id | https://openalex.org/keywords/recommender-system |
| keywords[3].score | 0.5484370589256287 |
| keywords[3].display_name | Recommender system |
| keywords[4].id | https://openalex.org/keywords/information-retrieval |
| keywords[4].score | 0.5167690515518188 |
| keywords[4].display_name | Information retrieval |
| keywords[5].id | https://openalex.org/keywords/trajectory |
| keywords[5].score | 0.4511781930923462 |
| keywords[5].display_name | Trajectory |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.44412657618522644 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/task |
| keywords[7].score | 0.43592873215675354 |
| keywords[7].display_name | Task (project management) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4254247844219208 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/spatial-contextual-awareness |
| keywords[9].score | 0.4230552911758423 |
| keywords[9].display_name | Spatial contextual awareness |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.4048844873905182 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3988543152809143 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.3353431820869446 |
| keywords[12].display_name | World Wide Web |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.1398358941078186 |
| keywords[13].display_name | Geography |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2120726/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2120726/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2120726/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5024674420 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6708-3152 |
| authorships[0].author.display_name | Xuemei Wei |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[0].affiliations[0].raw_affiliation_string | Hefei University of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I16365422 |
| authorships[0].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hefei University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuemei Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hefei University of Technology |
| authorships[1].author.id | https://openalex.org/A5100599272 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5731-7645 |
| authorships[1].author.display_name | Chunli Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[1].affiliations[0].raw_affiliation_string | Hefei University of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I16365422 |
| authorships[1].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hefei University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chunli Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hefei University of Technology |
| authorships[2].author.id | https://openalex.org/A5030946475 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9193-5236 |
| authorships[2].author.display_name | Yezheng Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[2].affiliations[0].raw_affiliation_string | Hefei University of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I16365422 |
| authorships[2].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hefei University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yezheng Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hefei University of Technology |
| authorships[3].author.id | https://openalex.org/A5100421558 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5478-7334 |
| authorships[3].author.display_name | Yang Li |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I166088655 |
| authorships[3].affiliations[0].raw_affiliation_string | Montclair State University |
| authorships[3].institutions[0].id | https://openalex.org/I166088655 |
| authorships[3].institutions[0].ror | https://ror.org/01nxc2t48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I166088655 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Montclair State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Montclair State University |
| authorships[4].author.id | https://openalex.org/A5100323927 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9959-319X |
| authorships[4].author.display_name | Kai Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[4].institutions[0].id | https://openalex.org/I126520041 |
| authorships[4].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology of China |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kai Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Science and Technology of China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2120726/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Next Location Recommendation: A Multi-context Features Integration Perspective |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11980 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Human Mobility and Location-Based Analysis |
| related_works | https://openalex.org/W1509467138, https://openalex.org/W2176304865, https://openalex.org/W1964738998, https://openalex.org/W240673130, https://openalex.org/W2294569909, https://openalex.org/W7602594, https://openalex.org/W2012594713, https://openalex.org/W2036147130, https://openalex.org/W2360360065, https://openalex.org/W2279114194 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2120726/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2120726/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2120726/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2120726/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2120726/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2120726/v1 |
| publication_date | 2022-10-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6816115541, https://openalex.org/W4205902690, https://openalex.org/W38296636, https://openalex.org/W3156834475, https://openalex.org/W386946596, https://openalex.org/W4210634776, https://openalex.org/W2901158445, https://openalex.org/W3088876447, https://openalex.org/W2784528539, https://openalex.org/W3038062469, https://openalex.org/W2808425487, https://openalex.org/W3128267727, https://openalex.org/W4220953416, https://openalex.org/W3187169135, https://openalex.org/W2971574736, https://openalex.org/W2509835757, https://openalex.org/W2798749602, https://openalex.org/W3209525383, https://openalex.org/W2472954632, https://openalex.org/W3043763655, https://openalex.org/W2788919350, https://openalex.org/W3094541400, https://openalex.org/W2330318528, https://openalex.org/W1972243012, https://openalex.org/W2111106816, https://openalex.org/W3103248659, https://openalex.org/W3095969223, https://openalex.org/W4322614756, https://openalex.org/W1966261380, https://openalex.org/W2801647701, https://openalex.org/W3093741743, https://openalex.org/W3133451866, https://openalex.org/W2987294674, https://openalex.org/W3142358935, https://openalex.org/W3007094428, https://openalex.org/W3029721461, https://openalex.org/W2907639449, https://openalex.org/W3032521456, https://openalex.org/W4291972642, https://openalex.org/W2968672409, https://openalex.org/W2998167534, https://openalex.org/W3093030979 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 83 |
| abstract_inverted_index.In | 78 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.in | 16, 57, 188 |
| abstract_inverted_index.of | 27, 59 |
| abstract_inverted_index.on | 177 |
| abstract_inverted_index.or | 30 |
| abstract_inverted_index.to | 5, 10, 72, 99, 126, 158, 171 |
| abstract_inverted_index.we | 81, 111, 133, 151 |
| abstract_inverted_index.(1) | 43 |
| abstract_inverted_index.(2) | 52 |
| abstract_inverted_index.(3) | 63 |
| abstract_inverted_index.and | 96, 122, 139, 155, 166 |
| abstract_inverted_index.for | 34, 106 |
| abstract_inverted_index.has | 185 |
| abstract_inverted_index.not | 44, 53, 64 |
| abstract_inverted_index.our | 183 |
| abstract_inverted_index.the | 17, 25, 47, 55, 75, 135, 141, 153, 160, 189 |
| abstract_inverted_index.use | 152 |
| abstract_inverted_index.LSTM | 154, 157 |
| abstract_inverted_index.Next | 1 |
| abstract_inverted_index.Then | 132 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.both | 118 |
| abstract_inverted_index.from | 39, 69 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.idea | 26 |
| abstract_inverted_index.mine | 6 |
| abstract_inverted_index.next | 18, 86, 190 |
| abstract_inverted_index.over | 194 |
| abstract_inverted_index.real | 179 |
| abstract_inverted_index.show | 181 |
| abstract_inverted_index.task | 193 |
| abstract_inverted_index.that | 90, 182 |
| abstract_inverted_index.they | 36 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.among | 148 |
| abstract_inverted_index.first | 112 |
| abstract_inverted_index.fully | 45, 65 |
| abstract_inverted_index.major | 41 |
| abstract_inverted_index.model | 89, 173, 184 |
| abstract_inverted_index.novel | 84 |
| abstract_inverted_index.other | 195 |
| abstract_inverted_index.still | 37 |
| abstract_inverted_index.their | 12 |
| abstract_inverted_index.three | 178 |
| abstract_inverted_index.which | 144 |
| abstract_inverted_index.while | 104 |
| abstract_inverted_index.graphs | 121, 125 |
| abstract_inverted_index.linked | 61 |
| abstract_inverted_index.method | 116 |
| abstract_inverted_index.obtain | 100 |
| abstract_inverted_index.paper, | 80 |
| abstract_inverted_index.social | 31, 97, 136 |
| abstract_inverted_index.subtle | 128 |
| abstract_inverted_index.suffer | 38 |
| abstract_inverted_index.users, | 62 |
| abstract_inverted_index.between | 50, 108, 130, 163 |
| abstract_inverted_index.capture | 159 |
| abstract_inverted_index.context | 98 |
| abstract_inverted_index.develop | 113 |
| abstract_inverted_index.explore | 134 |
| abstract_inverted_index.further | 73 |
| abstract_inverted_index.improve | 74, 172 |
| abstract_inverted_index.moment. | 19 |
| abstract_inverted_index.predict | 11 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.results | 187 |
| abstract_inverted_index.several | 40 |
| abstract_inverted_index.sources | 71 |
| abstract_inverted_index.studies | 22 |
| abstract_inverted_index.various | 168 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 20 |
| abstract_inverted_index.Finally, | 150 |
| abstract_inverted_index.allowing | 105 |
| abstract_inverted_index.context, | 93, 95 |
| abstract_inverted_index.datasets | 180 |
| abstract_inverted_index.explored | 24 |
| abstract_inverted_index.friends. | 149 |
| abstract_inverted_index.location | 2, 29, 87, 92, 120, 123, 142, 191 |
| abstract_inverted_index.previous | 21 |
| abstract_inverted_index.semantic | 48, 124 |
| abstract_inverted_index.socially | 60 |
| abstract_inverted_index.subgraph | 143 |
| abstract_inverted_index.superior | 186 |
| abstract_inverted_index.users’ | 7, 102, 164 |
| abstract_inverted_index.Extensive | 175 |
| abstract_inverted_index.combining | 117 |
| abstract_inverted_index.considers | 145 |
| abstract_inverted_index.contexts. | 109 |
| abstract_inverted_index.efficient | 115 |
| abstract_inverted_index.integrate | 167 |
| abstract_inverted_index.introduce | 140 |
| abstract_inverted_index.locations | 15 |
| abstract_inverted_index.preferred | 14 |
| abstract_inverted_index.utilizing | 66 |
| abstract_inverted_index.baselines. | 196 |
| abstract_inverted_index.contextual | 32, 67, 137, 169 |
| abstract_inverted_index.high-order | 119 |
| abstract_inverted_index.historical | 8 |
| abstract_inverted_index.locations, | 51 |
| abstract_inverted_index.locations. | 131 |
| abstract_inverted_index.trajectory | 94 |
| abstract_inverted_index.considering | 46, 54 |
| abstract_inverted_index.distinctive | 70 |
| abstract_inverted_index.experiments | 176 |
| abstract_inverted_index.geo-dilated | 156 |
| abstract_inverted_index.information | 33, 68, 138, 170 |
| abstract_inverted_index.potentially | 13 |
| abstract_inverted_index.preferences | 58, 103, 147 |
| abstract_inverted_index.associations | 49, 129, 162 |
| abstract_inverted_index.characterize | 127 |
| abstract_inverted_index.incorporates | 91 |
| abstract_inverted_index.interactions | 107 |
| abstract_inverted_index.limitations: | 42 |
| abstract_inverted_index.performance. | 77, 174 |
| abstract_inverted_index.trajectories | 9, 165 |
| abstract_inverted_index.Specifically, | 110 |
| abstract_inverted_index.comprehensive | 101 |
| abstract_inverted_index.heterogeneity | 56 |
| abstract_inverted_index.heterogeneous | 146 |
| abstract_inverted_index.incorporating | 28 |
| abstract_inverted_index.recommendation | 3, 76, 88, 192 |
| abstract_inverted_index.recommendation, | 35 |
| abstract_inverted_index.spatio-temporal | 161 |
| abstract_inverted_index.multi-context-based | 85 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.67039136 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |