Nil-Brauer categorifies the split iquantum group of rank one Article Swipe
Related Concepts
Mathematics
Brauer group
Indecomposable module
Pure mathematics
Basis (linear algebra)
Isomorphism (crystallography)
Rank (graph theory)
Quantum
Group (periodic table)
Projective module
Tensor product
Projective test
Algebra over a field
Discrete mathematics
Combinatorics
Geometry
Crystallography
Chemistry
Physics
Crystal structure
Organic chemistry
Quantum mechanics
Jonathan Brundan
,
Weiqiang Wang
,
Ben Webster
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.05877
· OA: W4376166997
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.05877
· OA: W4376166997
We prove that the Grothendieck ring of the monoidal category of finitely generated graded projective modules for the nil-Brauer category is isomorphic to an integral form of the split iquantum group of rank one. Under this isomorphism, the indecomposable graded projective modules correspond to the icanonical basis. We also derive character formulae for irreducible graded modules and deduce various branching rules.
Related Topics
Finding more related topics…