NMGMDA: A Computational Model for Predicting Potential Microbe–Drug Associations based on Minimize Matrix Nuclear Norm and Graph Attention Network Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3364690/v1
For drug research and development, the probable microbe-drug associations can be predicted with considerable utility. Deep learning-based techniques have recently found widespread use in the biomedical industry and have significantly improved identification performance. Additionally, the growing body of knowledge on germs and pharmaceutical biomedicine offers a fantastic potential for methods based on deep learning to forecast hidden associations between microbes and drugs. In order to infer latent microbe-drug associations, we developed a unique computational model in this publication called NMGMDA based on the nuclear norm minimization and graph attention network. We created a heterogeneous microbe-drug network in NMGMDA by fusing the drug and microbe similarities with the established associations between drugs and microbes. Then, in order to get predicted scores of potential microbe-drug associations, we used the nuclear norm minimization approach and a GAT-based auto-encoder, respectively. The final results, which are based on two datasets and weighted average of these two predicted scores, demonstrated that NMGMDA can outperform state-of-the-art competitive approaches. Case studies further demonstrated its capacity to reliably find fresh associations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3364690/v1
- https://www.researchsquare.com/article/rs-3364690/latest.pdf
- OA Status
- gold
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387186629
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387186629Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3364690/v1Digital Object Identifier
- Title
-
NMGMDA: A Computational Model for Predicting Potential Microbe–Drug Associations based on Minimize Matrix Nuclear Norm and Graph Attention NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-29Full publication date if available
- Authors
-
Mingmin Liang, Xianzhi Liu, Qijia Chen, Bin Zeng, Lei WangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3364690/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3364690/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3364690/latest.pdfDirect OA link when available
- Concepts
-
Drug, Norm (philosophy), Computer science, Artificial intelligence, Graph, Machine learning, Encoder, Biology, Theoretical computer science, Pharmacology, Law, Operating system, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387186629 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3364690/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3364690/v1 |
| ids.openalex | https://openalex.org/W4387186629 |
| fwci | 0.0 |
| type | preprint |
| title | NMGMDA: A Computational Model for Predicting Potential Microbe–Drug Associations based on Minimize Matrix Nuclear Norm and Graph Attention Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10066 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gut microbiota and health |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10836 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9868999719619751 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Metabolomics and Mass Spectrometry Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780035454 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5733842849731445 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[0].display_name | Drug |
| concepts[1].id | https://openalex.org/C191795146 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5298255085945129 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[1].display_name | Norm (philosophy) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5214373469352722 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5119796991348267 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4904646575450897 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4639773964881897 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C118505674 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44261884689331055 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[6].display_name | Encoder |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20475387573242188 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.18608859181404114 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C98274493 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12287551164627075 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[9].display_name | Pharmacology |
| concepts[10].id | https://openalex.org/C199539241 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[10].display_name | Law |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/drug |
| keywords[0].score | 0.5733842849731445 |
| keywords[0].display_name | Drug |
| keywords[1].id | https://openalex.org/keywords/norm |
| keywords[1].score | 0.5298255085945129 |
| keywords[1].display_name | Norm (philosophy) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5214373469352722 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5119796991348267 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.4904646575450897 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4639773964881897 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/encoder |
| keywords[6].score | 0.44261884689331055 |
| keywords[6].display_name | Encoder |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.20475387573242188 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.18608859181404114 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/pharmacology |
| keywords[9].score | 0.12287551164627075 |
| keywords[9].display_name | Pharmacology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3364690/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3364690/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3364690/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5106715694 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mingmin Liang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210141792 |
| authorships[0].affiliations[0].raw_affiliation_string | Hunan vocational College of Electronic and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I4210141792 |
| authorships[0].institutions[0].ror | https://ror.org/0464edf64 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210141792 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan Vocational Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingmin Liang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hunan vocational College of Electronic and Technology |
| authorships[1].author.id | https://openalex.org/A5101751488 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6646-273X |
| authorships[1].author.display_name | Xianzhi Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210141792 |
| authorships[1].affiliations[0].raw_affiliation_string | Hunan vocational College of Electronic and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I4210141792 |
| authorships[1].institutions[0].ror | https://ror.org/0464edf64 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210141792 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan Vocational Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianzhi Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hunan vocational College of Electronic and Technology |
| authorships[2].author.id | https://openalex.org/A5019142239 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qijia Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210141792 |
| authorships[2].affiliations[0].raw_affiliation_string | Hunan vocational College of Electronic and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I4210141792 |
| authorships[2].institutions[0].ror | https://ror.org/0464edf64 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210141792 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan Vocational Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qijia Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hunan vocational College of Electronic and Technology |
| authorships[3].author.id | https://openalex.org/A5026037336 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1905-8929 |
| authorships[3].author.display_name | Bin Zeng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210141792 |
| authorships[3].affiliations[0].raw_affiliation_string | Hunan vocational College of Electronic and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I4210141792 |
| authorships[3].institutions[0].ror | https://ror.org/0464edf64 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210141792 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hunan Vocational Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bin Zeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hunan vocational College of Electronic and Technology |
| authorships[4].author.id | https://openalex.org/A5100710637 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5065-8447 |
| authorships[4].author.display_name | Lei Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210141792 |
| authorships[4].affiliations[0].raw_affiliation_string | Hunan vocational College of Electronic and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I4210141792 |
| authorships[4].institutions[0].ror | https://ror.org/0464edf64 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210141792 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hunan Vocational Institute of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lei Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hunan vocational College of Electronic and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3364690/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | NMGMDA: A Computational Model for Predicting Potential Microbe–Drug Associations based on Minimize Matrix Nuclear Norm and Graph Attention Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10066 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gut microbiota and health |
| related_works | https://openalex.org/W2275988210, https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4224009465, https://openalex.org/W2385621972, https://openalex.org/W4286629047, https://openalex.org/W4306321456, https://openalex.org/W4285260836, https://openalex.org/W3046775127, https://openalex.org/W3170094116 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3364690/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3364690/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3364690/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3364690/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3364690/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3364690/v1 |
| publication_date | 2023-09-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2128769815, https://openalex.org/W4255502791, https://openalex.org/W2145336165, https://openalex.org/W2008054523, https://openalex.org/W2012606594, https://openalex.org/W2073332363, https://openalex.org/W2896473060, https://openalex.org/W2016853666, https://openalex.org/W3178147479, https://openalex.org/W2948160364, https://openalex.org/W4212796599, https://openalex.org/W2903096015, https://openalex.org/W2769934873, https://openalex.org/W3005110075, https://openalex.org/W3033577323, https://openalex.org/W4223948920, https://openalex.org/W4200313900, https://openalex.org/W4223609654, https://openalex.org/W4318539234, https://openalex.org/W4309467503, https://openalex.org/W4318982906, https://openalex.org/W2980041146, https://openalex.org/W4297733535, https://openalex.org/W2900569176, https://openalex.org/W2583889943, https://openalex.org/W2087007556, https://openalex.org/W2960557205, https://openalex.org/W2008997396, https://openalex.org/W3047212992, https://openalex.org/W3093030756, https://openalex.org/W4313480822, https://openalex.org/W4248464255, https://openalex.org/W3031223968, https://openalex.org/W2419267534, https://openalex.org/W2148990039, https://openalex.org/W4254455900, https://openalex.org/W2101034266, https://openalex.org/W2108964528, https://openalex.org/W2626636251, https://openalex.org/W2165439688, https://openalex.org/W2166545019, https://openalex.org/W4248452774, https://openalex.org/W2052855222, https://openalex.org/W2115132031, https://openalex.org/W4229657713 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 46, 72, 93, 133 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.be | 11 |
| abstract_inverted_index.by | 99 |
| abstract_inverted_index.in | 24, 76, 97, 115 |
| abstract_inverted_index.of | 38, 121, 149 |
| abstract_inverted_index.on | 40, 52, 82, 143 |
| abstract_inverted_index.to | 55, 65, 117, 168 |
| abstract_inverted_index.we | 70, 125 |
| abstract_inverted_index.For | 1 |
| abstract_inverted_index.The | 137 |
| abstract_inverted_index.and | 4, 28, 42, 61, 87, 103, 112, 132, 146 |
| abstract_inverted_index.are | 141 |
| abstract_inverted_index.can | 10, 157 |
| abstract_inverted_index.for | 49 |
| abstract_inverted_index.get | 118 |
| abstract_inverted_index.its | 166 |
| abstract_inverted_index.the | 6, 25, 35, 83, 101, 107, 127 |
| abstract_inverted_index.two | 144, 151 |
| abstract_inverted_index.use | 23 |
| abstract_inverted_index.Case | 162 |
| abstract_inverted_index.Deep | 16 |
| abstract_inverted_index.body | 37 |
| abstract_inverted_index.deep | 53 |
| abstract_inverted_index.drug | 2, 102 |
| abstract_inverted_index.find | 170 |
| abstract_inverted_index.have | 19, 29 |
| abstract_inverted_index.norm | 85, 129 |
| abstract_inverted_index.that | 155 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.used | 126 |
| abstract_inverted_index.with | 13, 106 |
| abstract_inverted_index.Then, | 114 |
| abstract_inverted_index.based | 51, 81, 142 |
| abstract_inverted_index.drugs | 111 |
| abstract_inverted_index.final | 138 |
| abstract_inverted_index.found | 21 |
| abstract_inverted_index.fresh | 171 |
| abstract_inverted_index.germs | 41 |
| abstract_inverted_index.graph | 88 |
| abstract_inverted_index.infer | 66 |
| abstract_inverted_index.model | 75 |
| abstract_inverted_index.order | 64, 116 |
| abstract_inverted_index.these | 150 |
| abstract_inverted_index.which | 140 |
| abstract_inverted_index.NMGMDA | 80, 98, 156 |
| abstract_inverted_index.called | 79 |
| abstract_inverted_index.drugs. | 62 |
| abstract_inverted_index.fusing | 100 |
| abstract_inverted_index.hidden | 57 |
| abstract_inverted_index.latent | 67 |
| abstract_inverted_index.offers | 45 |
| abstract_inverted_index.scores | 120 |
| abstract_inverted_index.unique | 73 |
| abstract_inverted_index.average | 148 |
| abstract_inverted_index.between | 59, 110 |
| abstract_inverted_index.created | 92 |
| abstract_inverted_index.further | 164 |
| abstract_inverted_index.growing | 36 |
| abstract_inverted_index.methods | 50 |
| abstract_inverted_index.microbe | 104 |
| abstract_inverted_index.network | 96 |
| abstract_inverted_index.nuclear | 84, 128 |
| abstract_inverted_index.scores, | 153 |
| abstract_inverted_index.studies | 163 |
| abstract_inverted_index.approach | 131 |
| abstract_inverted_index.capacity | 167 |
| abstract_inverted_index.datasets | 145 |
| abstract_inverted_index.forecast | 56 |
| abstract_inverted_index.improved | 31 |
| abstract_inverted_index.industry | 27 |
| abstract_inverted_index.learning | 54 |
| abstract_inverted_index.microbes | 60 |
| abstract_inverted_index.network. | 90 |
| abstract_inverted_index.probable | 7 |
| abstract_inverted_index.recently | 20 |
| abstract_inverted_index.reliably | 169 |
| abstract_inverted_index.research | 3 |
| abstract_inverted_index.results, | 139 |
| abstract_inverted_index.utility. | 15 |
| abstract_inverted_index.weighted | 147 |
| abstract_inverted_index.GAT-based | 134 |
| abstract_inverted_index.attention | 89 |
| abstract_inverted_index.developed | 71 |
| abstract_inverted_index.fantastic | 47 |
| abstract_inverted_index.knowledge | 39 |
| abstract_inverted_index.microbes. | 113 |
| abstract_inverted_index.potential | 48, 122 |
| abstract_inverted_index.predicted | 12, 119, 152 |
| abstract_inverted_index.biomedical | 26 |
| abstract_inverted_index.outperform | 158 |
| abstract_inverted_index.techniques | 18 |
| abstract_inverted_index.widespread | 22 |
| abstract_inverted_index.approaches. | 161 |
| abstract_inverted_index.biomedicine | 44 |
| abstract_inverted_index.competitive | 160 |
| abstract_inverted_index.established | 108 |
| abstract_inverted_index.publication | 78 |
| abstract_inverted_index.associations | 9, 58, 109 |
| abstract_inverted_index.considerable | 14 |
| abstract_inverted_index.demonstrated | 154, 165 |
| abstract_inverted_index.development, | 5 |
| abstract_inverted_index.microbe-drug | 8, 68, 95, 123 |
| abstract_inverted_index.minimization | 86, 130 |
| abstract_inverted_index.performance. | 33 |
| abstract_inverted_index.similarities | 105 |
| abstract_inverted_index.Additionally, | 34 |
| abstract_inverted_index.associations, | 69, 124 |
| abstract_inverted_index.associations. | 172 |
| abstract_inverted_index.auto-encoder, | 135 |
| abstract_inverted_index.computational | 74 |
| abstract_inverted_index.heterogeneous | 94 |
| abstract_inverted_index.respectively. | 136 |
| abstract_inverted_index.significantly | 30 |
| abstract_inverted_index.identification | 32 |
| abstract_inverted_index.learning-based | 17 |
| abstract_inverted_index.pharmaceutical | 43 |
| abstract_inverted_index.state-of-the-art | 159 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.3014272 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |