NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/abea69
Instrumental and environmental transient noise bursts in gravitational-wave (GW) detectors, or glitches, may impair astrophysical observations by adversely affecting the sky localization and the parameter estimation of GW signals. Denoising of detector data is especially relevant during low-latency operations because electromagnetic follow-up of candidate detections requires accurate, rapid sky localization and inference of astrophysical sources. NNETFIX is a machine learning, artificial neural network-based algorithm designed to estimate the data containing a transient GW signal with an overlapping glitch as though the glitch was absent. The sky localization calculated from the denoised data may be significantly more accurate than the sky localization obtained from the original data or by removing the portion of the data impacted by the glitch. We test NNETFIX in simulated scenarios of binary black hole coalescence signals and discuss the potential for its use in future low-latency LIGO-Virgo-KAGRA searches. In the majority of cases for signals with a high signal-to-noise ratio, we find that the overlap of the sky maps obtained with the denoised data and the original data is better than the overlap of the sky maps obtained with the original data and the data with the glitch removed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/abea69
- https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdf
- OA Status
- gold
- Cited By
- 1
- References
- 37
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3119483553
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3119483553Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/abea69Digital Object Identifier
- Title
-
NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signalsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-26Full publication date if available
- Authors
-
K. Mogushi, R. Quitzow-James, M. Cavaglià, Sumeet Kulkarni, F. J. HayesList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/abea69Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdfDirect OA link when available
- Concepts
-
Glitch, Sky, Gravitational wave, Detector, Physics, LIGO, Computer science, Noise (video), Artificial neural network, Noise reduction, SIGNAL (programming language), Artificial intelligence, Astronomy, Optics, Programming language, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3119483553 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/abea69 |
| ids.doi | https://doi.org/10.1088/2632-2153/abea69 |
| ids.mag | 3119483553 |
| ids.openalex | https://openalex.org/W3119483553 |
| fwci | 0.17278535 |
| type | preprint |
| title | NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 035018 |
| biblio.first_page | 035018 |
| topics[0].id | https://openalex.org/T10463 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Pulsars and Gravitational Waves Research |
| topics[1].id | https://openalex.org/T10744 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9790999889373779 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3103 |
| topics[1].subfield.display_name | Astronomy and Astrophysics |
| topics[1].display_name | Astrophysical Phenomena and Observations |
| topics[2].id | https://openalex.org/T12300 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9251999855041504 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Electrical Measurement Techniques |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| concepts[0].id | https://openalex.org/C191287063 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8250335454940796 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q543281 |
| concepts[0].display_name | Glitch |
| concepts[1].id | https://openalex.org/C73329638 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7622255086898804 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q527 |
| concepts[1].display_name | Sky |
| concepts[2].id | https://openalex.org/C190330329 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7365081310272217 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190035 |
| concepts[2].display_name | Gravitational wave |
| concepts[3].id | https://openalex.org/C94915269 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5492172837257385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[3].display_name | Detector |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5437960624694824 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C2780688901 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5221310257911682 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q255371 |
| concepts[5].display_name | LIGO |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.46960222721099854 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4668577015399933 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.462318480014801 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C163294075 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4465295970439911 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[9].display_name | Noise reduction |
| concepts[10].id | https://openalex.org/C2779843651 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43340739607810974 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[10].display_name | SIGNAL (programming language) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3997306525707245 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C1276947 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2671670913696289 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[12].display_name | Astronomy |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11373552680015564 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/glitch |
| keywords[0].score | 0.8250335454940796 |
| keywords[0].display_name | Glitch |
| keywords[1].id | https://openalex.org/keywords/sky |
| keywords[1].score | 0.7622255086898804 |
| keywords[1].display_name | Sky |
| keywords[2].id | https://openalex.org/keywords/gravitational-wave |
| keywords[2].score | 0.7365081310272217 |
| keywords[2].display_name | Gravitational wave |
| keywords[3].id | https://openalex.org/keywords/detector |
| keywords[3].score | 0.5492172837257385 |
| keywords[3].display_name | Detector |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.5437960624694824 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/ligo |
| keywords[5].score | 0.5221310257911682 |
| keywords[5].display_name | LIGO |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.46960222721099854 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.4668577015399933 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.462318480014801 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/noise-reduction |
| keywords[9].score | 0.4465295970439911 |
| keywords[9].display_name | Noise reduction |
| keywords[10].id | https://openalex.org/keywords/signal |
| keywords[10].score | 0.43340739607810974 |
| keywords[10].display_name | SIGNAL (programming language) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3997306525707245 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/astronomy |
| keywords[12].score | 0.2671670913696289 |
| keywords[12].display_name | Astronomy |
| keywords[13].id | https://openalex.org/keywords/optics |
| keywords[13].score | 0.11373552680015564 |
| keywords[13].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/abea69 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/abea69 |
| locations[1].id | pmh:oai:eprints.gla.ac.uk:244200 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400411 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Enlighten: Publications (The University of Glasgow) |
| locations[1].source.host_organization | https://openalex.org/I7882870 |
| locations[1].source.host_organization_name | University of Glasgow |
| locations[1].source.host_organization_lineage | https://openalex.org/I7882870 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Articles |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:arXiv.org:2101.04712 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2101.04712 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2101.04712 |
| locations[3].id | mag:3119483553 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | https://arxiv.org/pdf/2101.04712.pdf |
| locations[4].id | doi:10.48550/arxiv.2101.04712 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.2101.04712 |
| indexed_in | arxiv, crossref, datacite, doaj |
| authorships[0].author.id | https://openalex.org/A5001095760 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3746-2586 |
| authorships[0].author.display_name | K. Mogushi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kentaro Mogushi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086137810 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1233-633X |
| authorships[1].author.display_name | R. Quitzow-James |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ryan Quitzow-James |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010262541 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3835-6729 |
| authorships[2].author.display_name | M. Cavaglià |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marco Cavaglià |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042370668 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8057-0203 |
| authorships[3].author.display_name | Sumeet Kulkarni |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sumeet Kulkarni |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066412366 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7628-3826 |
| authorships[4].author.display_name | F. J. Hayes |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fergus Hayes |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10463 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Pulsars and Gravitational Waves Research |
| related_works | https://openalex.org/W3135125289, https://openalex.org/W3024837947, https://openalex.org/W2588831884, https://openalex.org/W3098777432, https://openalex.org/W2165221235, https://openalex.org/W2943005941, https://openalex.org/W3119239537, https://openalex.org/W2139778726, https://openalex.org/W2160270088, https://openalex.org/W1790289060, https://openalex.org/W3025130744, https://openalex.org/W3081182902, https://openalex.org/W3167003851, https://openalex.org/W3047320288, https://openalex.org/W2310969657, https://openalex.org/W3162119205, https://openalex.org/W3093511151, https://openalex.org/W1631642545, https://openalex.org/W3209897857, https://openalex.org/W3089698983 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1088/2632-2153/abea69 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/abea69 |
| primary_location.id | doi:10.1088/2632-2153/abea69 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/abea69/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/abea69 |
| publication_date | 2021-02-26 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2252795400, https://openalex.org/W2158293236, https://openalex.org/W1994870116, https://openalex.org/W2971836485, https://openalex.org/W3081939279, https://openalex.org/W3082518999, https://openalex.org/W3036761016, https://openalex.org/W2765081049, https://openalex.org/W2766840380, https://openalex.org/W2766754978, https://openalex.org/W2999365684, https://openalex.org/W2806836424, https://openalex.org/W2581294054, https://openalex.org/W2953142974, https://openalex.org/W2885835694, https://openalex.org/W1891707817, https://openalex.org/W3118978936, https://openalex.org/W3022596706, https://openalex.org/W2809261986, https://openalex.org/W3025130744, https://openalex.org/W2907952156, https://openalex.org/W2973095452, https://openalex.org/W2198581161, https://openalex.org/W6903030333, https://openalex.org/W2899782607, https://openalex.org/W6750708366, https://openalex.org/W4233045210, https://openalex.org/W1572063013, https://openalex.org/W6637242042, https://openalex.org/W1134494461, https://openalex.org/W2140515550, https://openalex.org/W1992161867, https://openalex.org/W2110075089, https://openalex.org/W2045206315, https://openalex.org/W1989374967, https://openalex.org/W2775061670, https://openalex.org/W2008353316 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 58, 71, 151 |
| abstract_inverted_index.GW | 28, 73 |
| abstract_inverted_index.In | 143 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.an | 76 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.be | 94 |
| abstract_inverted_index.by | 17, 108, 116 |
| abstract_inverted_index.in | 7, 122, 138 |
| abstract_inverted_index.is | 34, 57, 173 |
| abstract_inverted_index.of | 27, 31, 43, 53, 112, 125, 146, 160, 178 |
| abstract_inverted_index.or | 11, 107 |
| abstract_inverted_index.to | 66 |
| abstract_inverted_index.we | 155 |
| abstract_inverted_index.The | 85 |
| abstract_inverted_index.and | 2, 23, 51, 131, 169, 187 |
| abstract_inverted_index.for | 135, 148 |
| abstract_inverted_index.its | 136 |
| abstract_inverted_index.may | 13, 93 |
| abstract_inverted_index.sky | 21, 49, 86, 100, 162, 180 |
| abstract_inverted_index.the | 20, 24, 68, 81, 90, 99, 104, 110, 113, 117, 133, 144, 158, 161, 166, 170, 176, 179, 184, 188, 191 |
| abstract_inverted_index.use | 137 |
| abstract_inverted_index.was | 83 |
| abstract_inverted_index.(GW) | 9 |
| abstract_inverted_index.data | 33, 69, 92, 106, 114, 168, 172, 186, 189 |
| abstract_inverted_index.find | 156 |
| abstract_inverted_index.from | 89, 103 |
| abstract_inverted_index.high | 152 |
| abstract_inverted_index.hole | 128 |
| abstract_inverted_index.maps | 163, 181 |
| abstract_inverted_index.more | 96 |
| abstract_inverted_index.test | 120 |
| abstract_inverted_index.than | 98, 175 |
| abstract_inverted_index.that | 157 |
| abstract_inverted_index.with | 75, 150, 165, 183, 190 |
| abstract_inverted_index.black | 127 |
| abstract_inverted_index.cases | 147 |
| abstract_inverted_index.noise | 5 |
| abstract_inverted_index.rapid | 48 |
| abstract_inverted_index.better | 174 |
| abstract_inverted_index.binary | 126 |
| abstract_inverted_index.bursts | 6 |
| abstract_inverted_index.during | 37 |
| abstract_inverted_index.future | 139 |
| abstract_inverted_index.glitch | 78, 82, 192 |
| abstract_inverted_index.impair | 14 |
| abstract_inverted_index.neural | 62 |
| abstract_inverted_index.ratio, | 154 |
| abstract_inverted_index.signal | 74 |
| abstract_inverted_index.though | 80 |
| abstract_inverted_index.NNETFIX | 56, 121 |
| abstract_inverted_index.absent. | 84 |
| abstract_inverted_index.because | 40 |
| abstract_inverted_index.discuss | 132 |
| abstract_inverted_index.glitch. | 118 |
| abstract_inverted_index.machine | 59 |
| abstract_inverted_index.overlap | 159, 177 |
| abstract_inverted_index.portion | 111 |
| abstract_inverted_index.signals | 130, 149 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accurate | 97 |
| abstract_inverted_index.denoised | 91, 167 |
| abstract_inverted_index.designed | 65 |
| abstract_inverted_index.detector | 32 |
| abstract_inverted_index.estimate | 67 |
| abstract_inverted_index.impacted | 115 |
| abstract_inverted_index.majority | 145 |
| abstract_inverted_index.obtained | 102, 164, 182 |
| abstract_inverted_index.original | 105, 171, 185 |
| abstract_inverted_index.relevant | 36 |
| abstract_inverted_index.removed. | 193 |
| abstract_inverted_index.removing | 109 |
| abstract_inverted_index.requires | 46 |
| abstract_inverted_index.signals. | 29 |
| abstract_inverted_index.sources. | 55 |
| abstract_inverted_index.Denoising | 30 |
| abstract_inverted_index.accurate, | 47 |
| abstract_inverted_index.adversely | 18 |
| abstract_inverted_index.affecting | 19 |
| abstract_inverted_index.algorithm | 64 |
| abstract_inverted_index.candidate | 44 |
| abstract_inverted_index.follow-up | 42 |
| abstract_inverted_index.glitches, | 12 |
| abstract_inverted_index.inference | 52 |
| abstract_inverted_index.learning, | 60 |
| abstract_inverted_index.parameter | 25 |
| abstract_inverted_index.potential | 134 |
| abstract_inverted_index.scenarios | 124 |
| abstract_inverted_index.searches. | 142 |
| abstract_inverted_index.simulated | 123 |
| abstract_inverted_index.transient | 4, 72 |
| abstract_inverted_index.artificial | 61 |
| abstract_inverted_index.calculated | 88 |
| abstract_inverted_index.containing | 70 |
| abstract_inverted_index.detections | 45 |
| abstract_inverted_index.detectors, | 10 |
| abstract_inverted_index.especially | 35 |
| abstract_inverted_index.estimation | 26 |
| abstract_inverted_index.operations | 39 |
| abstract_inverted_index.coalescence | 129 |
| abstract_inverted_index.low-latency | 38, 140 |
| abstract_inverted_index.overlapping | 77 |
| abstract_inverted_index.Instrumental | 1 |
| abstract_inverted_index.localization | 22, 50, 87, 101 |
| abstract_inverted_index.observations | 16 |
| abstract_inverted_index.astrophysical | 15, 54 |
| abstract_inverted_index.environmental | 3 |
| abstract_inverted_index.network-based | 63 |
| abstract_inverted_index.significantly | 95 |
| abstract_inverted_index.electromagnetic | 41 |
| abstract_inverted_index.signal-to-noise | 153 |
| abstract_inverted_index.LIGO-Virgo-KAGRA | 141 |
| abstract_inverted_index.gravitational-wave | 8 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.61350404 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |