Non-Asymptotic Analysis of Online Local Private Learning with SGD Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.07041
Differentially Private Stochastic Gradient Descent (DP-SGD) has been widely used for solving optimization problems with privacy guarantees in machine learning and statistics. Despite this, a systematic non-asymptotic convergence analysis for DP-SGD, particularly in the context of online problems and local differential privacy (LDP) models, remains largely elusive. Existing non-asymptotic analyses have focused on non-private optimization methods, and hence are not applicable to privacy-preserving optimization problems. This work initiates the analysis to bridge this gap and opens the door to non-asymptotic convergence analysis of private optimization problems. A general framework is investigated for the online LDP model in stochastic optimization problems. We assume that sensitive information from individuals is collected sequentially and aim to estimate, in real-time, a static parameter that pertains to the population of interest. Most importantly, we conduct a comprehensive non-asymptotic convergence analysis of the proposed estimators in finite-sample situations, which gives their users practical guidelines regarding the effect of various hyperparameters, such as step size, parameter dimensions, and privacy budgets, on convergence rates. Our proposed estimators are validated in the theoretical and practical realms by rigorous mathematical derivations and carefully constructed numerical experiments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.07041
- https://arxiv.org/pdf/2507.07041
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416063030
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416063030Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.07041Digital Object Identifier
- Title
-
Non-Asymptotic Analysis of Online Local Private Learning with SGDWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-09Full publication date if available
- Authors
-
Enze Shi, Jinhan Xie, Bei Jiang, Linglong Kong, X. T. HeList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.07041Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.07041Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.07041Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416063030 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.07041 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.07041 |
| ids.openalex | https://openalex.org/W4416063030 |
| fwci | |
| type | preprint |
| title | Non-Asymptotic Analysis of Online Local Private Learning with SGD |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.07041 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.07041 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.07041 |
| locations[1].id | doi:10.48550/arxiv.2507.07041 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.07041 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053922017 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Enze Shi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shi, Enze |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101055390 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7407-8474 |
| authorships[1].author.display_name | Jinhan Xie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xie, Jinhan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006962593 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0033-839X |
| authorships[2].author.display_name | Bei Jiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiang, Bei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5062334200 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3011-9216 |
| authorships[3].author.display_name | Linglong Kong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kong, Linglong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100432159 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7033-7640 |
| authorships[4].author.display_name | X. T. He |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | He, Xuming |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.07041 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Asymptotic Analysis of Online Local Private Learning with SGD |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:24:58.072318 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.07041 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.07041 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.07041 |
| primary_location.id | pmh:oai:arXiv.org:2507.07041 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.07041 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.07041 |
| publication_date | 2025-07-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 86 |
| abstract_inverted_index.a | 24, 116, 130 |
| abstract_inverted_index.We | 100 |
| abstract_inverted_index.as | 155 |
| abstract_inverted_index.by | 177 |
| abstract_inverted_index.in | 17, 32, 96, 114, 139, 171 |
| abstract_inverted_index.is | 89, 107 |
| abstract_inverted_index.of | 35, 82, 124, 135, 151 |
| abstract_inverted_index.on | 52, 163 |
| abstract_inverted_index.to | 61, 70, 78, 112, 121 |
| abstract_inverted_index.we | 128 |
| abstract_inverted_index.LDP | 94 |
| abstract_inverted_index.Our | 166 |
| abstract_inverted_index.aim | 111 |
| abstract_inverted_index.and | 20, 38, 56, 74, 110, 160, 174, 181 |
| abstract_inverted_index.are | 58, 169 |
| abstract_inverted_index.for | 10, 29, 91 |
| abstract_inverted_index.gap | 73 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.not | 59 |
| abstract_inverted_index.the | 33, 68, 76, 92, 122, 136, 149, 172 |
| abstract_inverted_index.Most | 126 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.door | 77 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.have | 50 |
| abstract_inverted_index.step | 156 |
| abstract_inverted_index.such | 154 |
| abstract_inverted_index.that | 102, 119 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.used | 9 |
| abstract_inverted_index.with | 14 |
| abstract_inverted_index.work | 66 |
| abstract_inverted_index.(LDP) | 42 |
| abstract_inverted_index.gives | 143 |
| abstract_inverted_index.hence | 57 |
| abstract_inverted_index.local | 39 |
| abstract_inverted_index.model | 95 |
| abstract_inverted_index.opens | 75 |
| abstract_inverted_index.size, | 157 |
| abstract_inverted_index.their | 144 |
| abstract_inverted_index.this, | 23 |
| abstract_inverted_index.users | 145 |
| abstract_inverted_index.which | 142 |
| abstract_inverted_index.assume | 101 |
| abstract_inverted_index.bridge | 71 |
| abstract_inverted_index.effect | 150 |
| abstract_inverted_index.online | 36, 93 |
| abstract_inverted_index.rates. | 165 |
| abstract_inverted_index.realms | 176 |
| abstract_inverted_index.static | 117 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.DP-SGD, | 30 |
| abstract_inverted_index.Descent | 4 |
| abstract_inverted_index.Despite | 22 |
| abstract_inverted_index.Private | 1 |
| abstract_inverted_index.conduct | 129 |
| abstract_inverted_index.context | 34 |
| abstract_inverted_index.focused | 51 |
| abstract_inverted_index.general | 87 |
| abstract_inverted_index.largely | 45 |
| abstract_inverted_index.machine | 18 |
| abstract_inverted_index.models, | 43 |
| abstract_inverted_index.privacy | 15, 41, 161 |
| abstract_inverted_index.private | 83 |
| abstract_inverted_index.remains | 44 |
| abstract_inverted_index.solving | 11 |
| abstract_inverted_index.various | 152 |
| abstract_inverted_index.(DP-SGD) | 5 |
| abstract_inverted_index.Existing | 47 |
| abstract_inverted_index.Gradient | 3 |
| abstract_inverted_index.analyses | 49 |
| abstract_inverted_index.analysis | 28, 69, 81, 134 |
| abstract_inverted_index.budgets, | 162 |
| abstract_inverted_index.elusive. | 46 |
| abstract_inverted_index.learning | 19 |
| abstract_inverted_index.methods, | 55 |
| abstract_inverted_index.pertains | 120 |
| abstract_inverted_index.problems | 13, 37 |
| abstract_inverted_index.proposed | 137, 167 |
| abstract_inverted_index.rigorous | 178 |
| abstract_inverted_index.carefully | 182 |
| abstract_inverted_index.collected | 108 |
| abstract_inverted_index.estimate, | 113 |
| abstract_inverted_index.framework | 88 |
| abstract_inverted_index.initiates | 67 |
| abstract_inverted_index.interest. | 125 |
| abstract_inverted_index.numerical | 184 |
| abstract_inverted_index.parameter | 118, 158 |
| abstract_inverted_index.practical | 146, 175 |
| abstract_inverted_index.problems. | 64, 85, 99 |
| abstract_inverted_index.regarding | 148 |
| abstract_inverted_index.sensitive | 103 |
| abstract_inverted_index.validated | 170 |
| abstract_inverted_index.Stochastic | 2 |
| abstract_inverted_index.applicable | 60 |
| abstract_inverted_index.estimators | 138, 168 |
| abstract_inverted_index.guarantees | 16 |
| abstract_inverted_index.guidelines | 147 |
| abstract_inverted_index.population | 123 |
| abstract_inverted_index.real-time, | 115 |
| abstract_inverted_index.stochastic | 97 |
| abstract_inverted_index.systematic | 25 |
| abstract_inverted_index.constructed | 183 |
| abstract_inverted_index.convergence | 27, 80, 133, 164 |
| abstract_inverted_index.derivations | 180 |
| abstract_inverted_index.dimensions, | 159 |
| abstract_inverted_index.individuals | 106 |
| abstract_inverted_index.information | 104 |
| abstract_inverted_index.non-private | 53 |
| abstract_inverted_index.situations, | 141 |
| abstract_inverted_index.statistics. | 21 |
| abstract_inverted_index.theoretical | 173 |
| abstract_inverted_index.differential | 40 |
| abstract_inverted_index.experiments. | 185 |
| abstract_inverted_index.importantly, | 127 |
| abstract_inverted_index.investigated | 90 |
| abstract_inverted_index.mathematical | 179 |
| abstract_inverted_index.optimization | 12, 54, 63, 84, 98 |
| abstract_inverted_index.particularly | 31 |
| abstract_inverted_index.sequentially | 109 |
| abstract_inverted_index.comprehensive | 131 |
| abstract_inverted_index.finite-sample | 140 |
| abstract_inverted_index.Differentially | 0 |
| abstract_inverted_index.non-asymptotic | 26, 48, 79, 132 |
| abstract_inverted_index.hyperparameters, | 153 |
| abstract_inverted_index.privacy-preserving | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |