Non-asymptotic approximations for Pearson's chi-square statistic and its application to confidence intervals for strictly convex functions of the probability weights of discrete distributions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.01882
In this paper, we develop a non-asymptotic local normal approximation for multinomial probabilities. First, we use it to find non-asymptotic total variation bounds between the measures induced by uniformly jittered multinomials and the multivariate normals with the same means and covariances. From the total variation bounds, we also derive a comparison of the cumulative distribution functions and quantile coupling inequalities between Pearson's chi-square statistic (written as the normalized quadratic form of a multinomial vector) and its multivariate normal analogue. We apply our results to find confidence intervals for the negative entropy of discrete distributions. Our method can be applied more generally to find confidence intervals for strictly convex functions of the weights of discrete distributions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.01882
- https://arxiv.org/pdf/2309.01882
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386557295
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386557295Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.01882Digital Object Identifier
- Title
-
Non-asymptotic approximations for Pearson's chi-square statistic and its application to confidence intervals for strictly convex functions of the probability weights of discrete distributionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-05Full publication date if available
- Authors
-
Eric Bax, Frédéric OuimetList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.01882Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.01882Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.01882Direct OA link when available
- Concepts
-
Mathematics, Multinomial distribution, Quantile, Statistics, Multivariate statistics, Confidence interval, Statistic, Multivariate normal distribution, CDF-based nonparametric confidence interval, Applied mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386557295 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.01882 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.01882 |
| ids.openalex | https://openalex.org/W4386557295 |
| fwci | |
| type | preprint |
| title | Non-asymptotic approximations for Pearson's chi-square statistic and its application to confidence intervals for strictly convex functions of the probability weights of discrete distributions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12261 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9872999787330627 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Statistical Mechanics and Entropy |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9376000165939331 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9214000105857849 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8688925504684448 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C192065140 |
| concepts[1].level | 2 |
| concepts[1].score | 0.676872730255127 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1147928 |
| concepts[1].display_name | Multinomial distribution |
| concepts[2].id | https://openalex.org/C118671147 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6750198602676392 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[2].display_name | Quantile |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5797017812728882 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C161584116 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49348556995391846 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[4].display_name | Multivariate statistics |
| concepts[5].id | https://openalex.org/C44249647 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46989771723747253 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[5].display_name | Confidence interval |
| concepts[6].id | https://openalex.org/C89128539 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45221415162086487 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1949963 |
| concepts[6].display_name | Statistic |
| concepts[7].id | https://openalex.org/C177384507 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4514077603816986 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1149000 |
| concepts[7].display_name | Multivariate normal distribution |
| concepts[8].id | https://openalex.org/C42468098 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4374869465827942 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5009921 |
| concepts[8].display_name | CDF-based nonparametric confidence interval |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41856229305267334 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.8688925504684448 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/multinomial-distribution |
| keywords[1].score | 0.676872730255127 |
| keywords[1].display_name | Multinomial distribution |
| keywords[2].id | https://openalex.org/keywords/quantile |
| keywords[2].score | 0.6750198602676392 |
| keywords[2].display_name | Quantile |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.5797017812728882 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[4].score | 0.49348556995391846 |
| keywords[4].display_name | Multivariate statistics |
| keywords[5].id | https://openalex.org/keywords/confidence-interval |
| keywords[5].score | 0.46989771723747253 |
| keywords[5].display_name | Confidence interval |
| keywords[6].id | https://openalex.org/keywords/statistic |
| keywords[6].score | 0.45221415162086487 |
| keywords[6].display_name | Statistic |
| keywords[7].id | https://openalex.org/keywords/multivariate-normal-distribution |
| keywords[7].score | 0.4514077603816986 |
| keywords[7].display_name | Multivariate normal distribution |
| keywords[8].id | https://openalex.org/keywords/cdf-based-nonparametric-confidence-interval |
| keywords[8].score | 0.4374869465827942 |
| keywords[8].display_name | CDF-based nonparametric confidence interval |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.41856229305267334 |
| keywords[9].display_name | Applied mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.01882 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.01882 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.01882 |
| locations[1].id | doi:10.48550/arxiv.2309.01882 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.01882 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020075641 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Eric Bax |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bax, Eric |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010318685 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7933-5265 |
| authorships[1].author.display_name | Frédéric Ouimet |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ouimet, Frédéric |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.01882 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-09-09T00:00:00 |
| display_name | Non-asymptotic approximations for Pearson's chi-square statistic and its application to confidence intervals for strictly convex functions of the probability weights of discrete distributions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12261 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9872999787330627 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Statistical Mechanics and Entropy |
| related_works | https://openalex.org/W2163475444, https://openalex.org/W2059186684, https://openalex.org/W2071388947, https://openalex.org/W4286726674, https://openalex.org/W2794786621, https://openalex.org/W2025186831, https://openalex.org/W2062391348, https://openalex.org/W2969593260, https://openalex.org/W1999853191, https://openalex.org/W4243504808 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.01882 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.01882 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.01882 |
| primary_location.id | pmh:oai:arXiv.org:2309.01882 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.01882 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.01882 |
| publication_date | 2023-09-05 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 49, 71 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.as | 65 |
| abstract_inverted_index.be | 97 |
| abstract_inverted_index.by | 27 |
| abstract_inverted_index.it | 16 |
| abstract_inverted_index.of | 51, 70, 91, 109, 112 |
| abstract_inverted_index.to | 17, 83, 101 |
| abstract_inverted_index.we | 3, 14, 46 |
| abstract_inverted_index.Our | 94 |
| abstract_inverted_index.and | 31, 39, 56, 74 |
| abstract_inverted_index.can | 96 |
| abstract_inverted_index.for | 10, 87, 105 |
| abstract_inverted_index.its | 75 |
| abstract_inverted_index.our | 81 |
| abstract_inverted_index.the | 24, 32, 36, 42, 52, 66, 88, 110 |
| abstract_inverted_index.use | 15 |
| abstract_inverted_index.From | 41 |
| abstract_inverted_index.also | 47 |
| abstract_inverted_index.find | 18, 84, 102 |
| abstract_inverted_index.form | 69 |
| abstract_inverted_index.more | 99 |
| abstract_inverted_index.same | 37 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 35 |
| abstract_inverted_index.apply | 80 |
| abstract_inverted_index.local | 7 |
| abstract_inverted_index.means | 38 |
| abstract_inverted_index.total | 20, 43 |
| abstract_inverted_index.First, | 13 |
| abstract_inverted_index.bounds | 22 |
| abstract_inverted_index.convex | 107 |
| abstract_inverted_index.derive | 48 |
| abstract_inverted_index.method | 95 |
| abstract_inverted_index.normal | 8, 77 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.applied | 98 |
| abstract_inverted_index.between | 23, 60 |
| abstract_inverted_index.bounds, | 45 |
| abstract_inverted_index.develop | 4 |
| abstract_inverted_index.entropy | 90 |
| abstract_inverted_index.induced | 26 |
| abstract_inverted_index.normals | 34 |
| abstract_inverted_index.results | 82 |
| abstract_inverted_index.vector) | 73 |
| abstract_inverted_index.weights | 111 |
| abstract_inverted_index.(written | 64 |
| abstract_inverted_index.coupling | 58 |
| abstract_inverted_index.discrete | 92, 113 |
| abstract_inverted_index.jittered | 29 |
| abstract_inverted_index.measures | 25 |
| abstract_inverted_index.negative | 89 |
| abstract_inverted_index.quantile | 57 |
| abstract_inverted_index.strictly | 106 |
| abstract_inverted_index.Pearson's | 61 |
| abstract_inverted_index.analogue. | 78 |
| abstract_inverted_index.functions | 55, 108 |
| abstract_inverted_index.generally | 100 |
| abstract_inverted_index.intervals | 86, 104 |
| abstract_inverted_index.quadratic | 68 |
| abstract_inverted_index.statistic | 63 |
| abstract_inverted_index.uniformly | 28 |
| abstract_inverted_index.variation | 21, 44 |
| abstract_inverted_index.chi-square | 62 |
| abstract_inverted_index.comparison | 50 |
| abstract_inverted_index.confidence | 85, 103 |
| abstract_inverted_index.cumulative | 53 |
| abstract_inverted_index.normalized | 67 |
| abstract_inverted_index.multinomial | 11, 72 |
| abstract_inverted_index.covariances. | 40 |
| abstract_inverted_index.distribution | 54 |
| abstract_inverted_index.inequalities | 59 |
| abstract_inverted_index.multinomials | 30 |
| abstract_inverted_index.multivariate | 33, 76 |
| abstract_inverted_index.approximation | 9 |
| abstract_inverted_index.distributions. | 93, 114 |
| abstract_inverted_index.non-asymptotic | 6, 19 |
| abstract_inverted_index.probabilities. | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |