Non-Euclidean Motion Planning with Graphs of Geodesically-Convex Sets Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.15607/rss.2023.xix.057
Computing optimal, collision-free trajectories for high-dimensional systems is a challenging problem.Samplingbased planners struggle with the dimensionality, whereas trajectory optimizers may get stuck in local minima due to inherent nonconvexities in the optimization landscape.The use of mixedinteger programming to encapsulate these nonconvexities and find globally optimal trajectories has recently shown great promise, thanks in part to tight convex relaxations and efficient approximation strategies that greatly reduce runtimes.These approaches were previously limited to Euclidean configuration spaces, precluding their use with mobile bases or continuous revolute joints.In this paper, we handle such scenarios by modeling configuration spaces as Riemannian manifolds, and we describe a reduction procedure for the zero-curvature case to a mixed-integer convex optimization problem.We demonstrate our results on various robot platforms, including producing efficient collision-free trajectories for a PR2 bimanual mobile manipulator.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15607/rss.2023.xix.057
- https://doi.org/10.15607/rss.2023.xix.057
- OA Status
- gold
- Cited By
- 15
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385430502
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385430502Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15607/rss.2023.xix.057Digital Object Identifier
- Title
-
Non-Euclidean Motion Planning with Graphs of Geodesically-Convex SetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-10Full publication date if available
- Authors
-
Thomas Cohn, Mark Petersen, Max Simchowitz, Russ TedrakeList of authors in order
- Landing page
-
https://doi.org/10.15607/rss.2023.xix.057Publisher landing page
- PDF URL
-
https://doi.org/10.15607/rss.2023.xix.057Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.15607/rss.2023.xix.057Direct OA link when available
- Concepts
-
Motion planning, Regular polygon, Computer science, Euclidean geometry, Motion (physics), Voronoi diagram, Combinatorics, Computer vision, Artificial intelligence, Mathematics, Robot, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 8, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385430502 |
|---|---|
| doi | https://doi.org/10.15607/rss.2023.xix.057 |
| ids.doi | https://doi.org/10.15607/rss.2023.xix.057 |
| ids.openalex | https://openalex.org/W4385430502 |
| fwci | 2.7295251 |
| type | article |
| title | Non-Euclidean Motion Planning with Graphs of Geodesically-Convex Sets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10586 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Robotic Path Planning Algorithms |
| topics[1].id | https://openalex.org/T10996 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1704 |
| topics[1].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[1].display_name | Computational Geometry and Mesh Generation |
| topics[2].id | https://openalex.org/T10879 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Robotic Locomotion and Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81074085 |
| concepts[0].level | 3 |
| concepts[0].score | 0.690778911113739 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q366872 |
| concepts[0].display_name | Motion planning |
| concepts[1].id | https://openalex.org/C112680207 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6298999786376953 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[1].display_name | Regular polygon |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5523110032081604 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C129782007 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5315268635749817 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q162886 |
| concepts[3].display_name | Euclidean geometry |
| concepts[4].id | https://openalex.org/C104114177 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4776557683944702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[4].display_name | Motion (physics) |
| concepts[5].id | https://openalex.org/C24881265 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4402257800102234 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q757267 |
| concepts[5].display_name | Voronoi diagram |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3489932417869568 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33164864778518677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3209325075149536 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3066723942756653 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C90509273 |
| concepts[10].level | 2 |
| concepts[10].score | 0.18713140487670898 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[10].display_name | Robot |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1411437690258026 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/motion-planning |
| keywords[0].score | 0.690778911113739 |
| keywords[0].display_name | Motion planning |
| keywords[1].id | https://openalex.org/keywords/regular-polygon |
| keywords[1].score | 0.6298999786376953 |
| keywords[1].display_name | Regular polygon |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5523110032081604 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/euclidean-geometry |
| keywords[3].score | 0.5315268635749817 |
| keywords[3].display_name | Euclidean geometry |
| keywords[4].id | https://openalex.org/keywords/motion |
| keywords[4].score | 0.4776557683944702 |
| keywords[4].display_name | Motion (physics) |
| keywords[5].id | https://openalex.org/keywords/voronoi-diagram |
| keywords[5].score | 0.4402257800102234 |
| keywords[5].display_name | Voronoi diagram |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.3489932417869568 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.33164864778518677 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3209325075149536 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3066723942756653 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/robot |
| keywords[10].score | 0.18713140487670898 |
| keywords[10].display_name | Robot |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.1411437690258026 |
| keywords[11].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.15607/rss.2023.xix.057 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.15607/rss.2023.xix.057 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Robotics: Science and Systems XIX |
| locations[0].landing_page_url | https://doi.org/10.15607/rss.2023.xix.057 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5047177769 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5411-0710 |
| authorships[0].author.display_name | Thomas Cohn |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4309 |
| authorships[0].institutions[0].id | https://openalex.org/I63966007 |
| authorships[0].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thomas Cohn |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4309 |
| authorships[1].author.id | https://openalex.org/A5088109190 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7170-7511 |
| authorships[1].author.display_name | Mark Petersen |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering and Applied Sciences (SEAS) Harvard University, Cambridge, Massachusetts 02138-2933 |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mark Petersen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering and Applied Sciences (SEAS) Harvard University, Cambridge, Massachusetts 02138-2933 |
| authorships[2].author.id | https://openalex.org/A5037154191 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9900-1238 |
| authorships[2].author.display_name | Max Simchowitz |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4309 |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Max Simchowitz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4309 |
| authorships[3].author.id | https://openalex.org/A5074291890 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Russ Tedrake |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4309 |
| authorships[3].institutions[0].id | https://openalex.org/I63966007 |
| authorships[3].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Russ Tedrake |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4309 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.15607/rss.2023.xix.057 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Euclidean Motion Planning with Graphs of Geodesically-Convex Sets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10586 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Robotic Path Planning Algorithms |
| related_works | https://openalex.org/W3020555194, https://openalex.org/W2793256277, https://openalex.org/W2348235448, https://openalex.org/W4360958759, https://openalex.org/W2116218375, https://openalex.org/W2389906634, https://openalex.org/W288156810, https://openalex.org/W2012380850, https://openalex.org/W1588722399, https://openalex.org/W4295884766 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.15607/rss.2023.xix.057 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.15607/rss.2023.xix.057 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Robotics: Science and Systems XIX |
| best_oa_location.landing_page_url | https://doi.org/10.15607/rss.2023.xix.057 |
| primary_location.id | doi:10.15607/rss.2023.xix.057 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.15607/rss.2023.xix.057 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Robotics: Science and Systems XIX |
| primary_location.landing_page_url | https://doi.org/10.15607/rss.2023.xix.057 |
| publication_date | 2023-07-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2128990851, https://openalex.org/W2161819990, https://openalex.org/W2019965290, https://openalex.org/W3105161877, https://openalex.org/W2414767203, https://openalex.org/W2015149365, https://openalex.org/W2774366155, https://openalex.org/W2946484349, https://openalex.org/W4289927633, https://openalex.org/W2757858194, https://openalex.org/W4224027762, https://openalex.org/W2974453536, https://openalex.org/W2901915167, https://openalex.org/W3117976796, https://openalex.org/W3200832869, https://openalex.org/W3119415136, https://openalex.org/W4289785732, https://openalex.org/W2320471620, https://openalex.org/W2280254565, https://openalex.org/W2134656724, https://openalex.org/W4280583482, https://openalex.org/W1970101292, https://openalex.org/W3102715624, https://openalex.org/W1671098680, https://openalex.org/W4312269899, https://openalex.org/W2460774278, https://openalex.org/W4287548864, https://openalex.org/W2962774730, https://openalex.org/W4388692454, https://openalex.org/W2022144657, https://openalex.org/W2808084307, https://openalex.org/W4226455220, https://openalex.org/W4231275788, https://openalex.org/W1557324374, https://openalex.org/W4323539420, https://openalex.org/W4287367083, https://openalex.org/W3027372030, https://openalex.org/W131069610, https://openalex.org/W757502775, https://openalex.org/W4311443225, https://openalex.org/W4246432740, https://openalex.org/W2896405912, https://openalex.org/W4312530573, https://openalex.org/W4294411035, https://openalex.org/W3207620687, https://openalex.org/W3132539115, https://openalex.org/W2550522504, https://openalex.org/W4246876444, https://openalex.org/W4361193490 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 8, 100, 108, 126 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 22, 29, 52 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 34 |
| abstract_inverted_index.on | 116 |
| abstract_inverted_index.or | 80 |
| abstract_inverted_index.to | 26, 37, 54, 70, 107 |
| abstract_inverted_index.we | 86, 98 |
| abstract_inverted_index.PR2 | 127 |
| abstract_inverted_index.and | 41, 58, 97 |
| abstract_inverted_index.due | 25 |
| abstract_inverted_index.for | 4, 103, 125 |
| abstract_inverted_index.get | 20 |
| abstract_inverted_index.has | 46 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.our | 114 |
| abstract_inverted_index.the | 14, 30, 104 |
| abstract_inverted_index.use | 33, 76 |
| abstract_inverted_index.case | 106 |
| abstract_inverted_index.find | 42 |
| abstract_inverted_index.part | 53 |
| abstract_inverted_index.such | 88 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.were | 67 |
| abstract_inverted_index.with | 13, 77 |
| abstract_inverted_index.bases | 79 |
| abstract_inverted_index.great | 49 |
| abstract_inverted_index.local | 23 |
| abstract_inverted_index.robot | 118 |
| abstract_inverted_index.shown | 48 |
| abstract_inverted_index.stuck | 21 |
| abstract_inverted_index.their | 75 |
| abstract_inverted_index.these | 39 |
| abstract_inverted_index.tight | 55 |
| abstract_inverted_index.convex | 56, 110 |
| abstract_inverted_index.handle | 87 |
| abstract_inverted_index.minima | 24 |
| abstract_inverted_index.mobile | 78, 129 |
| abstract_inverted_index.paper, | 85 |
| abstract_inverted_index.reduce | 64 |
| abstract_inverted_index.spaces | 93 |
| abstract_inverted_index.thanks | 51 |
| abstract_inverted_index.greatly | 63 |
| abstract_inverted_index.limited | 69 |
| abstract_inverted_index.optimal | 44 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.spaces, | 73 |
| abstract_inverted_index.systems | 6 |
| abstract_inverted_index.various | 117 |
| abstract_inverted_index.whereas | 16 |
| abstract_inverted_index.bimanual | 128 |
| abstract_inverted_index.describe | 99 |
| abstract_inverted_index.globally | 43 |
| abstract_inverted_index.inherent | 27 |
| abstract_inverted_index.modeling | 91 |
| abstract_inverted_index.optimal, | 1 |
| abstract_inverted_index.planners | 11 |
| abstract_inverted_index.promise, | 50 |
| abstract_inverted_index.recently | 47 |
| abstract_inverted_index.revolute | 82 |
| abstract_inverted_index.struggle | 12 |
| abstract_inverted_index.Computing | 0 |
| abstract_inverted_index.Euclidean | 71 |
| abstract_inverted_index.efficient | 59, 122 |
| abstract_inverted_index.including | 120 |
| abstract_inverted_index.joints.In | 83 |
| abstract_inverted_index.procedure | 102 |
| abstract_inverted_index.producing | 121 |
| abstract_inverted_index.reduction | 101 |
| abstract_inverted_index.scenarios | 89 |
| abstract_inverted_index.Riemannian | 95 |
| abstract_inverted_index.approaches | 66 |
| abstract_inverted_index.continuous | 81 |
| abstract_inverted_index.manifolds, | 96 |
| abstract_inverted_index.optimizers | 18 |
| abstract_inverted_index.platforms, | 119 |
| abstract_inverted_index.precluding | 74 |
| abstract_inverted_index.previously | 68 |
| abstract_inverted_index.problem.We | 112 |
| abstract_inverted_index.strategies | 61 |
| abstract_inverted_index.trajectory | 17 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.demonstrate | 113 |
| abstract_inverted_index.encapsulate | 38 |
| abstract_inverted_index.programming | 36 |
| abstract_inverted_index.relaxations | 57 |
| abstract_inverted_index.manipulator. | 130 |
| abstract_inverted_index.mixedinteger | 35 |
| abstract_inverted_index.optimization | 31, 111 |
| abstract_inverted_index.trajectories | 3, 45, 124 |
| abstract_inverted_index.approximation | 60 |
| abstract_inverted_index.configuration | 72, 92 |
| abstract_inverted_index.landscape.The | 32 |
| abstract_inverted_index.mixed-integer | 109 |
| abstract_inverted_index.collision-free | 2, 123 |
| abstract_inverted_index.nonconvexities | 28, 40 |
| abstract_inverted_index.runtimes.These | 65 |
| abstract_inverted_index.zero-curvature | 105 |
| abstract_inverted_index.dimensionality, | 15 |
| abstract_inverted_index.high-dimensional | 5 |
| abstract_inverted_index.problem.Samplingbased | 10 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.89668142 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |