Non-Facial Video Spatiotemporal Forensic Analysis Using Deep Learning Techniques Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.46604/peti.2023.10290
Digital content manipulation software is working as a boon for people to edit recorded video or audio content. To prevent the unethical use of such readily available altering tools, digital multimedia forensics is becoming increasingly important. Hence, this study aims to identify whether the video and audio of the given digital content are fake or real. For temporal video forgery detection, the convolutional 3D layers are used to build a model which can identify temporal forgeries with an average accuracy of 85% on the validation dataset. Also, the identification of audio forgery, using a ResNet-34 pre-trained model and the transfer learning approach, has been achieved. The proposed model achieves an accuracy of 99% with 0.3% validation loss on the validation part of the logical access dataset, which is better than earlier models in the range of 90-95% accuracy on the validation set.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.46604/peti.2023.10290
- https://ojs.imeti.org/index.php/PETI/article/download/10290/1332
- OA Status
- diamond
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313326425
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313326425Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.46604/peti.2023.10290Digital Object Identifier
- Title
-
Non-Facial Video Spatiotemporal Forensic Analysis Using Deep Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-29Full publication date if available
- Authors
-
Premanand Ghadekar, Vaibhavi Shetty, Prapti Maheshwari, Raj J. Shah, Anish Shaha, Vaishnav SonawaneList of authors in order
- Landing page
-
https://doi.org/10.46604/peti.2023.10290Publisher landing page
- PDF URL
-
https://ojs.imeti.org/index.php/PETI/article/download/10290/1332Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.imeti.org/index.php/PETI/article/download/10290/1332Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Digital forensics, Transfer of learning, Deep learning, Set (abstract data type), Identification (biology), Digital content, Software, Multimedia, Pattern recognition (psychology), Machine learning, Computer security, Programming language, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313326425 |
|---|---|
| doi | https://doi.org/10.46604/peti.2023.10290 |
| ids.doi | https://doi.org/10.46604/peti.2023.10290 |
| ids.openalex | https://openalex.org/W4313326425 |
| fwci | 0.0 |
| type | article |
| title | Non-Facial Video Spatiotemporal Forensic Analysis Using Deep Learning Techniques |
| biblio.issue | |
| biblio.volume | 23 |
| biblio.last_page | 14 |
| biblio.first_page | 01 |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T13877 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9896000027656555 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3308 |
| topics[1].subfield.display_name | Law |
| topics[1].display_name | Law in Society and Culture |
| topics[2].id | https://openalex.org/T10388 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9836000204086304 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Steganography and Watermarking Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8494840860366821 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5807904601097107 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C84418412 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5612683296203613 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3246940 |
| concepts[2].display_name | Digital forensics |
| concepts[3].id | https://openalex.org/C150899416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5469326376914978 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[3].display_name | Transfer of learning |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5232362151145935 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5221417546272278 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C116834253 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46879205107688904 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[6].display_name | Identification (biology) |
| concepts[7].id | https://openalex.org/C2779344036 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46194109320640564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11320476 |
| concepts[7].display_name | Digital content |
| concepts[8].id | https://openalex.org/C2777904410 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44417932629585266 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[8].display_name | Software |
| concepts[9].id | https://openalex.org/C49774154 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3843421936035156 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[9].display_name | Multimedia |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.34658083319664 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3260082006454468 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1035873293876648 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C59822182 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[15].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8494840860366821 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5807904601097107 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/digital-forensics |
| keywords[2].score | 0.5612683296203613 |
| keywords[2].display_name | Digital forensics |
| keywords[3].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[3].score | 0.5469326376914978 |
| keywords[3].display_name | Transfer of learning |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5232362151145935 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.5221417546272278 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/identification |
| keywords[6].score | 0.46879205107688904 |
| keywords[6].display_name | Identification (biology) |
| keywords[7].id | https://openalex.org/keywords/digital-content |
| keywords[7].score | 0.46194109320640564 |
| keywords[7].display_name | Digital content |
| keywords[8].id | https://openalex.org/keywords/software |
| keywords[8].score | 0.44417932629585266 |
| keywords[8].display_name | Software |
| keywords[9].id | https://openalex.org/keywords/multimedia |
| keywords[9].score | 0.3843421936035156 |
| keywords[9].display_name | Multimedia |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.34658083319664 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3260082006454468 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/computer-security |
| keywords[12].score | 0.1035873293876648 |
| keywords[12].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.46604/peti.2023.10290 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201138 |
| locations[0].source.issn | 2413-7146, 2518-833X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2413-7146 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of Engineering and Technology Innovation |
| locations[0].source.host_organization | https://openalex.org/P4310319360 |
| locations[0].source.host_organization_name | Taiwan Association of Engineering and Technology Innovation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319360 |
| locations[0].source.host_organization_lineage_names | Taiwan Association of Engineering and Technology Innovation |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ojs.imeti.org/index.php/PETI/article/download/10290/1332 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of Engineering and Technology Innovation |
| locations[0].landing_page_url | https://doi.org/10.46604/peti.2023.10290 |
| locations[1].id | pmh:oai:ojs.imeti.org:article/10290 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402329 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Open Journal Systems (Taiwan Association of Engineering and Technology Innovation) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-nc |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Proceedings of Engineering and Technology Innovation; Vol 23 (2023); 01-14 |
| locations[1].landing_page_url | https://ojs.imeti.org/index.php/PETI/article/view/10290 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5023365259 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3134-137X |
| authorships[0].author.display_name | Premanand Ghadekar |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Premanand Ghadekar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[1].author.id | https://openalex.org/A5080259526 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vaibhavi Shetty |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Vaibhavi Shetty |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[2].author.id | https://openalex.org/A5028205125 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Prapti Maheshwari |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Prapti Maheshwari |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[3].author.id | https://openalex.org/A5052119250 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9736-4139 |
| authorships[3].author.display_name | Raj J. Shah |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Raj Shah |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[4].author.id | https://openalex.org/A5036756305 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Anish Shaha |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | None Anish Shaha |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[5].author.id | https://openalex.org/A5040943257 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Vaishnav Sonawane |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | None Vaishnav Sonawane |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Technology, Vishwakarma Institute of Technology, Pune, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.imeti.org/index.php/PETI/article/download/10290/1332 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Facial Video Spatiotemporal Forensic Analysis Using Deep Learning Techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| related_works | https://openalex.org/W4206357785, https://openalex.org/W3192840557, https://openalex.org/W4281381188, https://openalex.org/W2951211570, https://openalex.org/W4375928479, https://openalex.org/W3167935049, https://openalex.org/W3023427754, https://openalex.org/W3131673289, https://openalex.org/W3198847674, https://openalex.org/W3096913503 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.46604/peti.2023.10290 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201138 |
| best_oa_location.source.issn | 2413-7146, 2518-833X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2413-7146 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of Engineering and Technology Innovation |
| best_oa_location.source.host_organization | https://openalex.org/P4310319360 |
| best_oa_location.source.host_organization_name | Taiwan Association of Engineering and Technology Innovation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319360 |
| best_oa_location.source.host_organization_lineage_names | Taiwan Association of Engineering and Technology Innovation |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ojs.imeti.org/index.php/PETI/article/download/10290/1332 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of Engineering and Technology Innovation |
| best_oa_location.landing_page_url | https://doi.org/10.46604/peti.2023.10290 |
| primary_location.id | doi:10.46604/peti.2023.10290 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201138 |
| primary_location.source.issn | 2413-7146, 2518-833X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2413-7146 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of Engineering and Technology Innovation |
| primary_location.source.host_organization | https://openalex.org/P4310319360 |
| primary_location.source.host_organization_name | Taiwan Association of Engineering and Technology Innovation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319360 |
| primary_location.source.host_organization_lineage_names | Taiwan Association of Engineering and Technology Innovation |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ojs.imeti.org/index.php/PETI/article/download/10290/1332 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of Engineering and Technology Innovation |
| primary_location.landing_page_url | https://doi.org/10.46604/peti.2023.10290 |
| publication_date | 2022-12-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3098220564, https://openalex.org/W2891145043, https://openalex.org/W2942466912, https://openalex.org/W2117734098, https://openalex.org/W2016419400, https://openalex.org/W2955054437, https://openalex.org/W2501843156, https://openalex.org/W2738082853, https://openalex.org/W2799950491, https://openalex.org/W2054754893, https://openalex.org/W4231125287, https://openalex.org/W2962958939, https://openalex.org/W2794857359, https://openalex.org/W2966661, https://openalex.org/W4220663171, https://openalex.org/W6743446608, https://openalex.org/W2969623024, https://openalex.org/W2149073238, https://openalex.org/W2598783175, https://openalex.org/W2143230380, https://openalex.org/W2772147921, https://openalex.org/W2892705963, https://openalex.org/W4291178128, https://openalex.org/W2592008540, https://openalex.org/W4205293199, https://openalex.org/W2905347572 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 7, 69, 93 |
| abstract_inverted_index.3D | 63 |
| abstract_inverted_index.To | 18 |
| abstract_inverted_index.an | 77, 109 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.in | 132 |
| abstract_inverted_index.is | 4, 32, 127 |
| abstract_inverted_index.of | 23, 47, 80, 89, 111, 121, 135 |
| abstract_inverted_index.on | 82, 117, 138 |
| abstract_inverted_index.or | 15, 54 |
| abstract_inverted_index.to | 11, 40, 67 |
| abstract_inverted_index.85% | 81 |
| abstract_inverted_index.99% | 112 |
| abstract_inverted_index.For | 56 |
| abstract_inverted_index.The | 105 |
| abstract_inverted_index.and | 45, 97 |
| abstract_inverted_index.are | 52, 65 |
| abstract_inverted_index.can | 72 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.has | 102 |
| abstract_inverted_index.the | 20, 43, 48, 61, 83, 87, 98, 118, 122, 133, 139 |
| abstract_inverted_index.use | 22 |
| abstract_inverted_index.0.3% | 114 |
| abstract_inverted_index.aims | 39 |
| abstract_inverted_index.been | 103 |
| abstract_inverted_index.boon | 8 |
| abstract_inverted_index.edit | 12 |
| abstract_inverted_index.fake | 53 |
| abstract_inverted_index.loss | 116 |
| abstract_inverted_index.part | 120 |
| abstract_inverted_index.set. | 141 |
| abstract_inverted_index.such | 24 |
| abstract_inverted_index.than | 129 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.used | 66 |
| abstract_inverted_index.with | 76, 113 |
| abstract_inverted_index.Also, | 86 |
| abstract_inverted_index.audio | 16, 46, 90 |
| abstract_inverted_index.build | 68 |
| abstract_inverted_index.given | 49 |
| abstract_inverted_index.model | 70, 96, 107 |
| abstract_inverted_index.range | 134 |
| abstract_inverted_index.real. | 55 |
| abstract_inverted_index.study | 38 |
| abstract_inverted_index.using | 92 |
| abstract_inverted_index.video | 14, 44, 58 |
| abstract_inverted_index.which | 71, 126 |
| abstract_inverted_index.90-95% | 136 |
| abstract_inverted_index.Hence, | 36 |
| abstract_inverted_index.access | 124 |
| abstract_inverted_index.better | 128 |
| abstract_inverted_index.layers | 64 |
| abstract_inverted_index.models | 131 |
| abstract_inverted_index.people | 10 |
| abstract_inverted_index.tools, | 28 |
| abstract_inverted_index.Digital | 0 |
| abstract_inverted_index.average | 78 |
| abstract_inverted_index.content | 1, 51 |
| abstract_inverted_index.digital | 29, 50 |
| abstract_inverted_index.earlier | 130 |
| abstract_inverted_index.forgery | 59 |
| abstract_inverted_index.logical | 123 |
| abstract_inverted_index.prevent | 19 |
| abstract_inverted_index.readily | 25 |
| abstract_inverted_index.whether | 42 |
| abstract_inverted_index.working | 5 |
| abstract_inverted_index.accuracy | 79, 110, 137 |
| abstract_inverted_index.achieves | 108 |
| abstract_inverted_index.altering | 27 |
| abstract_inverted_index.becoming | 33 |
| abstract_inverted_index.content. | 17 |
| abstract_inverted_index.dataset, | 125 |
| abstract_inverted_index.dataset. | 85 |
| abstract_inverted_index.forgery, | 91 |
| abstract_inverted_index.identify | 41, 73 |
| abstract_inverted_index.learning | 100 |
| abstract_inverted_index.proposed | 106 |
| abstract_inverted_index.recorded | 13 |
| abstract_inverted_index.software | 3 |
| abstract_inverted_index.temporal | 57, 74 |
| abstract_inverted_index.transfer | 99 |
| abstract_inverted_index.ResNet-34 | 94 |
| abstract_inverted_index.achieved. | 104 |
| abstract_inverted_index.approach, | 101 |
| abstract_inverted_index.available | 26 |
| abstract_inverted_index.forensics | 31 |
| abstract_inverted_index.forgeries | 75 |
| abstract_inverted_index.unethical | 21 |
| abstract_inverted_index.detection, | 60 |
| abstract_inverted_index.important. | 35 |
| abstract_inverted_index.multimedia | 30 |
| abstract_inverted_index.validation | 84, 115, 119, 140 |
| abstract_inverted_index.pre-trained | 95 |
| abstract_inverted_index.increasingly | 34 |
| abstract_inverted_index.manipulation | 2 |
| abstract_inverted_index.convolutional | 62 |
| abstract_inverted_index.identification | 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.16272718 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |