Non-Intrusive Load Disaggregation Based on Residual Gated Network Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1088/1757-899x/677/3/032092
Non-intrusive load disaggregation is designed to estimate the power consumption of each appliance based on the total power of the appliance in the household. Conventional machine learning algorithms cannot accurately extract semantic information from time series data, which motivates us to implement nonintrusive load disaggregation using residual gated recurrent neural networks model (Res-GRU). First, the networks model use multi-scale convolution kernels networks model extract time series data features, and will get multiple map fusions. Secondly, the networks model use residual learning to deepen the network to extract deep load features. Finally, the networks model use the gated recurrent unit to reset and update high level features. In this way, we can get the output power value of the target appliance. The experimental results show that the proposed network model has a good disaggregation effect.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1757-899x/677/3/032092
- OA Status
- diamond
- Cited By
- 2
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2995711280
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2995711280Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1757-899x/677/3/032092Digital Object Identifier
- Title
-
Non-Intrusive Load Disaggregation Based on Residual Gated NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-01Full publication date if available
- Authors
-
Hui Cao, Liguo Weng, Min Xia, Dezheng ZhangList of authors in order
- Landing page
-
https://doi.org/10.1088/1757-899x/677/3/032092Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1757-899x/677/3/032092Direct OA link when available
- Concepts
-
Residual, Reset (finance), Computer science, Convolution (computer science), Power (physics), Artificial intelligence, Series (stratigraphy), Scale (ratio), Network model, Artificial neural network, Real-time computing, Data mining, Algorithm, Physics, Biology, Financial economics, Quantum mechanics, Economics, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2995711280 |
|---|---|
| doi | https://doi.org/10.1088/1757-899x/677/3/032092 |
| ids.doi | https://doi.org/10.1088/1757-899x/677/3/032092 |
| ids.mag | 2995711280 |
| ids.openalex | https://openalex.org/W2995711280 |
| fwci | 1.22433831 |
| type | article |
| title | Non-Intrusive Load Disaggregation Based on Residual Gated Network |
| biblio.issue | 3 |
| biblio.volume | 677 |
| biblio.last_page | 032092 |
| biblio.first_page | 032092 |
| topics[0].id | https://openalex.org/T10603 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Smart Grid Energy Management |
| topics[1].id | https://openalex.org/T10121 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9936000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Building Energy and Comfort Optimization |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8763129711151123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C2779795794 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7811743021011353 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7315343 |
| concepts[1].display_name | Reset (finance) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7262201309204102 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C45347329 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5281028151512146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[3].display_name | Convolution (computer science) |
| concepts[4].id | https://openalex.org/C163258240 |
| concepts[4].level | 2 |
| concepts[4].score | 0.466969758272171 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[4].display_name | Power (physics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4521801471710205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C143724316 |
| concepts[6].level | 2 |
| concepts[6].score | 0.436749666929245 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[6].display_name | Series (stratigraphy) |
| concepts[7].id | https://openalex.org/C2778755073 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43086516857147217 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[7].display_name | Scale (ratio) |
| concepts[8].id | https://openalex.org/C104122410 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4220470190048218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1416406 |
| concepts[8].display_name | Network model |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.36061856150627136 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3519483506679535 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3387153148651123 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23635992407798767 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C106159729 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[15].display_name | Financial economics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.8763129711151123 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/reset |
| keywords[1].score | 0.7811743021011353 |
| keywords[1].display_name | Reset (finance) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7262201309204102 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolution |
| keywords[3].score | 0.5281028151512146 |
| keywords[3].display_name | Convolution (computer science) |
| keywords[4].id | https://openalex.org/keywords/power |
| keywords[4].score | 0.466969758272171 |
| keywords[4].display_name | Power (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4521801471710205 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/series |
| keywords[6].score | 0.436749666929245 |
| keywords[6].display_name | Series (stratigraphy) |
| keywords[7].id | https://openalex.org/keywords/scale |
| keywords[7].score | 0.43086516857147217 |
| keywords[7].display_name | Scale (ratio) |
| keywords[8].id | https://openalex.org/keywords/network-model |
| keywords[8].score | 0.4220470190048218 |
| keywords[8].display_name | Network model |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.36061856150627136 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.3519483506679535 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3387153148651123 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.23635992407798767 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1088/1757-899x/677/3/032092 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210189194 |
| locations[0].source.issn | 1757-8981, 1757-899X |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1757-8981 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IOP Conference Series Materials Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IOP Conference Series: Materials Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.1088/1757-899x/677/3/032092 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5011092409 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4433-9669 |
| authorships[0].author.display_name | Hui Cao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I200845125 |
| authorships[0].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hui Cao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5079828880 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3734-3114 |
| authorships[1].author.display_name | Liguo Weng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I200845125 |
| authorships[1].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liguo Weng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5045380530 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4681-9129 |
| authorships[2].author.display_name | Min Xia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[2].institutions[0].id | https://openalex.org/I200845125 |
| authorships[2].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Min Xia |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[3].author.id | https://openalex.org/A5024869142 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3456-5259 |
| authorships[3].author.display_name | Dezheng Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| authorships[3].institutions[0].id | https://openalex.org/I200845125 |
| authorships[3].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dezheng Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Automation, Nanjing University of Information Science & Technology, Nanjing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1757-899x/677/3/032092 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Intrusive Load Disaggregation Based on Residual Gated Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10603 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Smart Grid Energy Management |
| related_works | https://openalex.org/W350273603, https://openalex.org/W2393495588, https://openalex.org/W96259911, https://openalex.org/W4385608460, https://openalex.org/W2168225754, https://openalex.org/W2370772865, https://openalex.org/W2000034628, https://openalex.org/W1528611913, https://openalex.org/W2387487224, https://openalex.org/W4366146733 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1757-899x/677/3/032092 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210189194 |
| best_oa_location.source.issn | 1757-8981, 1757-899X |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1757-8981 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IOP Conference Series Materials Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IOP Conference Series: Materials Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1757-899x/677/3/032092 |
| primary_location.id | doi:10.1088/1757-899x/677/3/032092 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210189194 |
| primary_location.source.issn | 1757-8981, 1757-899X |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1757-8981 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IOP Conference Series Materials Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IOP Conference Series: Materials Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.1088/1757-899x/677/3/032092 |
| publication_date | 2019-12-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2101743194, https://openalex.org/W2188280455, https://openalex.org/W1735866749, https://openalex.org/W2180975645, https://openalex.org/W2338554958, https://openalex.org/W2006478669, https://openalex.org/W1988917187, https://openalex.org/W1993297921, https://openalex.org/W2088953431, https://openalex.org/W2750941888, https://openalex.org/W2115712706, https://openalex.org/W3103730413 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 131 |
| abstract_inverted_index.In | 107 |
| abstract_inverted_index.in | 22 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 11, 19, 117 |
| abstract_inverted_index.on | 15 |
| abstract_inverted_index.to | 6, 41, 82, 86, 100 |
| abstract_inverted_index.us | 40 |
| abstract_inverted_index.we | 110 |
| abstract_inverted_index.The | 121 |
| abstract_inverted_index.and | 69, 102 |
| abstract_inverted_index.can | 111 |
| abstract_inverted_index.get | 71, 112 |
| abstract_inverted_index.has | 130 |
| abstract_inverted_index.map | 73 |
| abstract_inverted_index.the | 8, 16, 20, 23, 55, 76, 84, 92, 96, 113, 118, 126 |
| abstract_inverted_index.use | 58, 79, 95 |
| abstract_inverted_index.data | 67 |
| abstract_inverted_index.deep | 88 |
| abstract_inverted_index.each | 12 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.good | 132 |
| abstract_inverted_index.high | 104 |
| abstract_inverted_index.load | 2, 44, 89 |
| abstract_inverted_index.show | 124 |
| abstract_inverted_index.that | 125 |
| abstract_inverted_index.this | 108 |
| abstract_inverted_index.time | 35, 65 |
| abstract_inverted_index.unit | 99 |
| abstract_inverted_index.way, | 109 |
| abstract_inverted_index.will | 70 |
| abstract_inverted_index.based | 14 |
| abstract_inverted_index.data, | 37 |
| abstract_inverted_index.gated | 48, 97 |
| abstract_inverted_index.level | 105 |
| abstract_inverted_index.model | 52, 57, 63, 78, 94, 129 |
| abstract_inverted_index.power | 9, 18, 115 |
| abstract_inverted_index.reset | 101 |
| abstract_inverted_index.total | 17 |
| abstract_inverted_index.using | 46 |
| abstract_inverted_index.value | 116 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.First, | 54 |
| abstract_inverted_index.cannot | 29 |
| abstract_inverted_index.deepen | 83 |
| abstract_inverted_index.neural | 50 |
| abstract_inverted_index.output | 114 |
| abstract_inverted_index.series | 36, 66 |
| abstract_inverted_index.target | 119 |
| abstract_inverted_index.update | 103 |
| abstract_inverted_index.effect. | 134 |
| abstract_inverted_index.extract | 31, 64, 87 |
| abstract_inverted_index.kernels | 61 |
| abstract_inverted_index.machine | 26 |
| abstract_inverted_index.network | 85, 128 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 91 |
| abstract_inverted_index.designed | 5 |
| abstract_inverted_index.estimate | 7 |
| abstract_inverted_index.fusions. | 74 |
| abstract_inverted_index.learning | 27, 81 |
| abstract_inverted_index.multiple | 72 |
| abstract_inverted_index.networks | 51, 56, 62, 77, 93 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.residual | 47, 80 |
| abstract_inverted_index.semantic | 32 |
| abstract_inverted_index.Secondly, | 75 |
| abstract_inverted_index.appliance | 13, 21 |
| abstract_inverted_index.features, | 68 |
| abstract_inverted_index.features. | 90, 106 |
| abstract_inverted_index.implement | 42 |
| abstract_inverted_index.motivates | 39 |
| abstract_inverted_index.recurrent | 49, 98 |
| abstract_inverted_index.(Res-GRU). | 53 |
| abstract_inverted_index.accurately | 30 |
| abstract_inverted_index.algorithms | 28 |
| abstract_inverted_index.appliance. | 120 |
| abstract_inverted_index.household. | 24 |
| abstract_inverted_index.consumption | 10 |
| abstract_inverted_index.convolution | 60 |
| abstract_inverted_index.information | 33 |
| abstract_inverted_index.multi-scale | 59 |
| abstract_inverted_index.Conventional | 25 |
| abstract_inverted_index.experimental | 122 |
| abstract_inverted_index.nonintrusive | 43 |
| abstract_inverted_index.Non-intrusive | 1 |
| abstract_inverted_index.disaggregation | 3, 45, 133 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5045380530 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I200845125 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.75694169 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |