Non-Intrusive Model Order Reduction for Sintering Applications Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.23967/c.coupled.2023.010
We are interested in thermo-mechanical problems arising in the context of a practically relevant manufacturing process called sintering. These models can be defined using a non-linear material model, namely the Skorohod-Olevsky Viscous Sintering (SOVS) constitutive model. This SOVS model is used to predict macroscopic sintering behavior, such as shrinkage and density evolution. Also, it relies on material properties such as temperature-dependent viscosity and surface tension. However, high-fidelity simulations of coupled, macroscopic, thermo-mechanical models are computationally intensive. Furthermore, developing reducedorder models addressing the non-linearities is challenging due to the history dependence and presence of internal variables. Performing parametric studies, optimization, real-time control, or parameter estimation for such problems, thus, becomes infeasible. In order to accelerate sintering simulations for such multi-query scenarios, a surrogate model is vital. Here, we present a non-intrusive reduced-order modelling framework based on proper orthogonal decomposition and Gaussian process regression. Furthermore, we discuss the performance of such a surrogate model using different metrics for the two-parameter Arrhenius-type viscosity function
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.23967/c.coupled.2023.010
- https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdf
- OA Status
- gold
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388531105
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388531105Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.23967/c.coupled.2023.010Digital Object Identifier
- Title
-
Non-Intrusive Model Order Reduction for Sintering ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
R. Dhopeshawar, Harshit Bansal, Karen Veroy, Hao Shi, Diletta GiuntiniList of authors in order
- Landing page
-
https://doi.org/10.23967/c.coupled.2023.010Publisher landing page
- PDF URL
-
https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdfDirect OA link when available
- Concepts
-
Context (archaeology), Surrogate model, Mathematical optimization, Model order reduction, Computer science, Viscosity, Sintering, Parametric statistics, Gaussian process, Materials science, Applied mathematics, Gaussian, Algorithm, Mathematics, Physics, Composite material, Biology, Statistics, Projection (relational algebra), Paleontology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388531105 |
|---|---|
| doi | https://doi.org/10.23967/c.coupled.2023.010 |
| ids.doi | https://doi.org/10.23967/c.coupled.2023.010 |
| ids.openalex | https://openalex.org/W4388531105 |
| fwci | 0.0 |
| type | article |
| title | Non-Intrusive Model Order Reduction for Sintering Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9868999719619751 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T12080 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9733999967575073 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Injection Molding Process and Properties |
| topics[2].id | https://openalex.org/T10791 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9587000012397766 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Control Systems Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779343474 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5809112191200256 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[0].display_name | Context (archaeology) |
| concepts[1].id | https://openalex.org/C131675550 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5276497602462769 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7646884 |
| concepts[1].display_name | Surrogate model |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5263698697090149 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C2779277453 |
| concepts[3].level | 3 |
| concepts[3].score | 0.508112907409668 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12202921 |
| concepts[3].display_name | Model order reduction |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5074488520622253 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C127172972 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4883136451244354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q128709 |
| concepts[5].display_name | Viscosity |
| concepts[6].id | https://openalex.org/C2777581544 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47800007462501526 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844613 |
| concepts[6].display_name | Sintering |
| concepts[7].id | https://openalex.org/C117251300 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4529688060283661 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[7].display_name | Parametric statistics |
| concepts[8].id | https://openalex.org/C61326573 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4523424208164215 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[8].display_name | Gaussian process |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4233500063419342 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33956432342529297 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C163716315 |
| concepts[11].level | 2 |
| concepts[11].score | 0.29526108503341675 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[11].display_name | Gaussian |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23659202456474304 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.21143603324890137 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11696332693099976 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09097164869308472 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C57493831 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[18].display_name | Projection (relational algebra) |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/context |
| keywords[0].score | 0.5809112191200256 |
| keywords[0].display_name | Context (archaeology) |
| keywords[1].id | https://openalex.org/keywords/surrogate-model |
| keywords[1].score | 0.5276497602462769 |
| keywords[1].display_name | Surrogate model |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.5263698697090149 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/model-order-reduction |
| keywords[3].score | 0.508112907409668 |
| keywords[3].display_name | Model order reduction |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5074488520622253 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/viscosity |
| keywords[5].score | 0.4883136451244354 |
| keywords[5].display_name | Viscosity |
| keywords[6].id | https://openalex.org/keywords/sintering |
| keywords[6].score | 0.47800007462501526 |
| keywords[6].display_name | Sintering |
| keywords[7].id | https://openalex.org/keywords/parametric-statistics |
| keywords[7].score | 0.4529688060283661 |
| keywords[7].display_name | Parametric statistics |
| keywords[8].id | https://openalex.org/keywords/gaussian-process |
| keywords[8].score | 0.4523424208164215 |
| keywords[8].display_name | Gaussian process |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.4233500063419342 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.33956432342529297 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/gaussian |
| keywords[11].score | 0.29526108503341675 |
| keywords[11].display_name | Gaussian |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.23659202456474304 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.21143603324890137 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.11696332693099976 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/composite-material |
| keywords[15].score | 0.09097164869308472 |
| keywords[15].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.23967/c.coupled.2023.010 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.23967/c.coupled.2023.010 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093230715 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | R. Dhopeshawar |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | R. Dhopeshawar |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Computer Science |
| authorships[1].author.id | https://openalex.org/A5059106165 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3606-499X |
| authorships[1].author.display_name | Harshit Bansal |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | H. Bansal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics and Computer Science |
| authorships[2].author.id | https://openalex.org/A5064473378 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3947-5882 |
| authorships[2].author.display_name | Karen Veroy |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | K. Veroy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics and Computer Science |
| authorships[3].author.id | https://openalex.org/A5011715984 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3609-9391 |
| authorships[3].author.display_name | Hao Shi |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I83019370 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands |
| authorships[3].institutions[0].id | https://openalex.org/I83019370 |
| authorships[3].institutions[0].ror | https://ror.org/02c2kyt77 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I83019370 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Eindhoven University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | H. Shi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mechanical Engineering Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands |
| authorships[4].author.id | https://openalex.org/A5056110171 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3338-6432 |
| authorships[4].author.display_name | Diletta Giuntini |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I83019370 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I83019370 |
| authorships[4].institutions[0].ror | https://ror.org/02c2kyt77 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I83019370 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Eindhoven University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | D. Giuntini |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Mechanical Engineering Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Intrusive Model Order Reduction for Sintering Applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9868999719619751 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W3146752240, https://openalex.org/W2378086236, https://openalex.org/W2470504773, https://openalex.org/W2365145484, https://openalex.org/W1991354250, https://openalex.org/W2903759548, https://openalex.org/W4312462449, https://openalex.org/W3119891423, https://openalex.org/W4237912051, https://openalex.org/W3116110246 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.23967/c.coupled.2023.010 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.23967/c.coupled.2023.010 |
| primary_location.id | doi:10.23967/c.coupled.2023.010 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://www.scipedia.com/wd/images/a/aa/Draft_Sanchez_Pinedo_808092432pap_202.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.23967/c.coupled.2023.010 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W73123583, https://openalex.org/W2912415393, https://openalex.org/W4362639419, https://openalex.org/W2017298982, https://openalex.org/W2130522179, https://openalex.org/W2161767008, https://openalex.org/W2604974793, https://openalex.org/W2071123070, https://openalex.org/W2295099209, https://openalex.org/W2094134692, https://openalex.org/W2040816012, https://openalex.org/W3099349222, https://openalex.org/W4317611127, https://openalex.org/W3068616514, https://openalex.org/W2919507395, https://openalex.org/W2168970443, https://openalex.org/W2044973463, https://openalex.org/W3207282223, https://openalex.org/W2971515228, https://openalex.org/W2592770700, https://openalex.org/W3137611682, https://openalex.org/W2027673706, https://openalex.org/W2066055951, https://openalex.org/W563626144, https://openalex.org/W2474567387, https://openalex.org/W4304615543, https://openalex.org/W2772709428 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 11, 24, 120, 128, 149 |
| abstract_inverted_index.In | 110 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 47, 59 |
| abstract_inverted_index.be | 21 |
| abstract_inverted_index.in | 3, 7 |
| abstract_inverted_index.is | 39, 83, 123 |
| abstract_inverted_index.it | 53 |
| abstract_inverted_index.of | 10, 68, 92, 147 |
| abstract_inverted_index.on | 55, 134 |
| abstract_inverted_index.or | 101 |
| abstract_inverted_index.to | 41, 86, 112 |
| abstract_inverted_index.we | 126, 143 |
| abstract_inverted_index.and | 49, 62, 90, 138 |
| abstract_inverted_index.are | 1, 73 |
| abstract_inverted_index.can | 20 |
| abstract_inverted_index.due | 85 |
| abstract_inverted_index.for | 104, 116, 155 |
| abstract_inverted_index.the | 8, 29, 81, 87, 145, 156 |
| abstract_inverted_index.SOVS | 37 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.such | 46, 58, 105, 117, 148 |
| abstract_inverted_index.used | 40 |
| abstract_inverted_index.Also, | 52 |
| abstract_inverted_index.Here, | 125 |
| abstract_inverted_index.These | 18 |
| abstract_inverted_index.based | 133 |
| abstract_inverted_index.model | 38, 122, 151 |
| abstract_inverted_index.order | 111 |
| abstract_inverted_index.thus, | 107 |
| abstract_inverted_index.using | 23, 152 |
| abstract_inverted_index.(SOVS) | 33 |
| abstract_inverted_index.called | 16 |
| abstract_inverted_index.model, | 27 |
| abstract_inverted_index.model. | 35 |
| abstract_inverted_index.models | 19, 72, 79 |
| abstract_inverted_index.namely | 28 |
| abstract_inverted_index.proper | 135 |
| abstract_inverted_index.relies | 54 |
| abstract_inverted_index.vital. | 124 |
| abstract_inverted_index.Viscous | 31 |
| abstract_inverted_index.arising | 6 |
| abstract_inverted_index.becomes | 108 |
| abstract_inverted_index.context | 9 |
| abstract_inverted_index.defined | 22 |
| abstract_inverted_index.density | 50 |
| abstract_inverted_index.discuss | 144 |
| abstract_inverted_index.history | 88 |
| abstract_inverted_index.metrics | 154 |
| abstract_inverted_index.predict | 42 |
| abstract_inverted_index.present | 127 |
| abstract_inverted_index.process | 15, 140 |
| abstract_inverted_index.surface | 63 |
| abstract_inverted_index.Gaussian | 139 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.control, | 100 |
| abstract_inverted_index.coupled, | 69 |
| abstract_inverted_index.function | 160 |
| abstract_inverted_index.internal | 93 |
| abstract_inverted_index.material | 26, 56 |
| abstract_inverted_index.presence | 91 |
| abstract_inverted_index.problems | 5 |
| abstract_inverted_index.relevant | 13 |
| abstract_inverted_index.studies, | 97 |
| abstract_inverted_index.tension. | 64 |
| abstract_inverted_index.Sintering | 32 |
| abstract_inverted_index.behavior, | 45 |
| abstract_inverted_index.different | 153 |
| abstract_inverted_index.framework | 132 |
| abstract_inverted_index.modelling | 131 |
| abstract_inverted_index.parameter | 102 |
| abstract_inverted_index.problems, | 106 |
| abstract_inverted_index.real-time | 99 |
| abstract_inverted_index.shrinkage | 48 |
| abstract_inverted_index.sintering | 44, 114 |
| abstract_inverted_index.surrogate | 121, 150 |
| abstract_inverted_index.viscosity | 61, 159 |
| abstract_inverted_index.Performing | 95 |
| abstract_inverted_index.accelerate | 113 |
| abstract_inverted_index.addressing | 80 |
| abstract_inverted_index.dependence | 89 |
| abstract_inverted_index.developing | 77 |
| abstract_inverted_index.estimation | 103 |
| abstract_inverted_index.evolution. | 51 |
| abstract_inverted_index.intensive. | 75 |
| abstract_inverted_index.interested | 2 |
| abstract_inverted_index.non-linear | 25 |
| abstract_inverted_index.orthogonal | 136 |
| abstract_inverted_index.parametric | 96 |
| abstract_inverted_index.properties | 57 |
| abstract_inverted_index.scenarios, | 119 |
| abstract_inverted_index.sintering. | 17 |
| abstract_inverted_index.variables. | 94 |
| abstract_inverted_index.challenging | 84 |
| abstract_inverted_index.infeasible. | 109 |
| abstract_inverted_index.macroscopic | 43 |
| abstract_inverted_index.multi-query | 118 |
| abstract_inverted_index.performance | 146 |
| abstract_inverted_index.practically | 12 |
| abstract_inverted_index.regression. | 141 |
| abstract_inverted_index.simulations | 67, 115 |
| abstract_inverted_index.Furthermore, | 76, 142 |
| abstract_inverted_index.constitutive | 34 |
| abstract_inverted_index.macroscopic, | 70 |
| abstract_inverted_index.reducedorder | 78 |
| abstract_inverted_index.decomposition | 137 |
| abstract_inverted_index.high-fidelity | 66 |
| abstract_inverted_index.manufacturing | 14 |
| abstract_inverted_index.non-intrusive | 129 |
| abstract_inverted_index.optimization, | 98 |
| abstract_inverted_index.reduced-order | 130 |
| abstract_inverted_index.two-parameter | 157 |
| abstract_inverted_index.Arrhenius-type | 158 |
| abstract_inverted_index.computationally | 74 |
| abstract_inverted_index.non-linearities | 82 |
| abstract_inverted_index.Skorohod-Olevsky | 30 |
| abstract_inverted_index.thermo-mechanical | 4, 71 |
| abstract_inverted_index.temperature-dependent | 60 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5093230715 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.14653139 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |